检索分析服务 Elasticsearch版

首页 标签 检索分析服务 Elasticsearch版
如何在 Elasticsearch 中构建你的智能 AI 助手?
随着微服务、容器化和云原生架构的发展,系统日志量呈指数增长。传统人工排查和固定规则告警方式已难以应对,导致日志查不准、异常发现慢等问题,影响系统稳定性和运维效率。本文介绍如何基于 Elasticsearch 构建具备自然语言理解、异常检测和安全威胁识别能力的智能运维 AI 助手,帮助将 Elasticsearch 从“日志仓库”升级为“智能决策中枢”,提升运维智能化水平与操作效率。
|
4天前
|
如何在 Elasticsearch 中构建你的智能 AI 助手?
本文将带你探索一种全新的思路:如何基于 Elasticsearch 快速构建一个具备自然语言理解能力、异常检测和安全威胁识别能力的智能运维 AI 助手 。文章会围绕实际部署流程、关键技术点和典型应用场景展开,帮助你把 Elasticsearch 从“日志仓库”升级为“智能决策中枢”。
森马服饰从 Elasticsearch 到阿里云 SelectDB 的架构演进之路
森马引入阿里云 SelectDB 替换原 Elasticsearch + 业务库混合架构,统一分析 16+ 核心业务,打通 BI 组件,大幅简化数据同步链路和分析系统架构。实现复杂查询 QPS 提升 400%,响应时间缩短至秒级,亿级库存流水聚合查询缩短至 8 秒内的显著收益,有效驱动森马全渠道运营效率持续增长与业务创新。
十亿 JSON 秒级响应:Apache Doris vs ClickHouse,Elasticsearch,PostgreSQL
JSONBench 是一个为 JSON 数据而生的数据分析 Benchmark,在默认设置下,Doris 的性能表现是 Elasticsearch 的 2 倍,是 PostgreSQL 的 80 倍。调优后,Doris 查询整体耗时降低了 74%,对比原榜单第一的 ClickHouse 产品实现了 39% 的领先优势。本文详细描述了调优思路与 Doris 调优前后的性能表现,欢迎阅读了解~
AI 搜索 MCP 最佳实践
本文介绍了如何通过 MCP 协议,快速调用阿里云 OpenSearch 、ElasticSearch 等工具,帮助企业快速集成工具链、降低开发复杂度、提升业务效率。
|
2月前
|
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
可观测性方案怎么选?SelectDB vs Elasticsearch vs ClickHouse
基于 SelectDB 的高性能倒排索引、高吞吐量写入和高压缩存储,用户可以构建出性能高于Elasticsearch 10 倍的可观测性平台,并支持国内外多个云上便捷使用 SelectDB Cloud 的开箱即用服务。
|
2月前
| |
来自: 云原生
使用 LangChain + Higress + Elasticsearch 构建 RAG 应用
本文介绍了如何利用LangChain、Higress和Elasticsearch快速构建RAG(检索增强生成)应用,实现企业知识的智能检索与问答。首先通过LangChain解析Markdown文档并写入Elasticsearch,接着部署Higress AI网关并配置ai-search插件以整合私有知识库与在线搜索功能。最后,通过实际案例展示了RAG查询流程及结果更新机制,确保内容准确性和时效性。文章还提供了相关参考资料以便进一步学习。
|
2月前
|
Elasticsearch Enterprise 9.0 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.0 (macOS, Linux, Windows) - 分布式搜索和分析引擎
免费试用
Elasticsearch Serverless通用抵扣包测试体验金 200元