分布式数据库

首页 标签 分布式数据库
# 分布式数据库 #
关注
17254内容
|
3月前
| |
来自: 数据库
亿级数据秒级响应:PolarDB MySQL HTAP实时分析方案设计与压测报告
PolarDB MySQL HTAP方案实现亿级数据秒级响应,支持高并发事务与实时分析。通过行列混存、智能路由与资源隔离,满足电商、金融等场景的实时报表、决策需求,降低架构复杂度与运维成本。
|
3月前
| |
来自: 数据库
突破IO瓶颈:PolarDB分布式并行查询(Parallel Query)深度调优手册
在海量数据处理中,I/O瓶颈严重制约数据库性能。本文基于PolarDB MySQL 8.0.32版本,深入解析分布式并行查询技术如何提升CPU利用率至86.7%、IO吞吐达8.5GB/s,并结合20+实战案例,系统讲解并行架构、执行计划优化、资源调优与故障排查方法,助力实现高性能数据分析。
|
3月前
| |
来自: 数据库
分布式事务难题终结:Seata+DRDS全局事务一致性架构设计
在分布式系统中,CAP定理限制了可用性、一致性与分区容错的三者兼得,尤其在网络分区时需做出取舍。为应对这一挑战,最终一致性方案成为常见选择。以电商订单系统为例,微服务化后,原本的本地事务演变为跨数据库的分布式事务,暴露出全局锁失效、事务边界模糊及协议差异等问题。本文深入探讨了基于 Seata 与 DRDS 的分布式事务解决方案,涵盖 AT 模式实践、分片策略优化、典型问题处理、性能调优及高级特性实现,结合实际业务场景提供可落地的技术路径与架构设计原则。通过压测验证,该方案在事务延迟、TPS 及失败率等方面均取得显著优化效果。
Super MySQL|揭秘PolarDB全异步执行架构,高并发场景性能利器
阿里云瑶池旗下的云原生数据库PolarDB MySQL版设计了基于协程的全异步执行架构,实现鉴权、事务提交、锁等待等核心逻辑的异步化执行,这是业界首个真正意义上实现全异步执行架构的MySQL数据库产品,显著提升了PolarDB MySQL的高并发处理能力,其中通用写入性能提升超过70%,长尾延迟降低60%以上。
客户说|知乎基于阿里云PolarDB,实现最大数据库集群云原生升级
近日,知乎最大的风控业务数据库集群,基于阿里云瑶池数据库完成了云原生技术架构的升级。此次升级不仅显著提升了系统的高可用性和性能上限,还大幅降低了底层资源成本。
【瑶池数据库训练营及解决方案本周精选(探索PolarDB,参与RDS迁移、连接训练营)】(5.30-6.8)
本周精选聚焦数据库迁移训练营、快速连接云数据库RDS训练营及智能多模态搜索解决方案。为用户提供模拟教程与实战演练,学习RDS MySQL实例连接与数据管理技能,助力企业智能化发展。每周解锁数据库实战新场景,抓紧时间,精彩不容错过!
|
4月前
|
【赵渝强老师】HBase的物理存储结构
本文介绍了HBase的存储结构,包括逻辑与物理存储结构。物理存储主要涉及StoreFile、HFile和HLog日志。HFile是HBase数据存储的核心格式,包含Data块、Meta块、File Info块等六部分,支持压缩以优化存储。HLog(预写日志)记录数据变更,确保数据可靠性,并在Region Server故障时用于恢复。最后,文章详细描述了HBase的写数据流程:先写入WAL日志,再写入MemStore,最终通过Flush操作将数据持久化到HFile中。
|
4月前
|
【赵渝强老师】HBase的逻辑存储结构
HBase的逻辑存储结构包括命名空间、表和列族。命名空间类似关系型数据库中的数据库,用于逻辑划分和隔离数据;表以RowKey组织数据并按字典序排列,分为多个Region实现分布式存储;列族包含列且无需预先定义,由MemStore缓存写入数据,定期刷新生成Store File。文章通过视频和代码示例详细讲解了各部分的操作与功能。
免费试用