如何优化超长定时任务:慢节点优化实践
本文介绍了一个复杂的ODPS任务优化过程。通过对任务耗时卡点的分析,发现主要问题是数据倾斜和join任务资源不足。通过提高join任务资源分配、对空值加随机值打散、视图物化落表、节点拆分、前置裁剪和使用Distributed Mapjoin等方法,成功将宽表产出时间从下午一点提前到早上八点半,节省了4小时以上。优化过程中还拆分了宽表节点,降低了回刷成本。文章强调了在设计开发初期应避免代码耦合度过高,以提高代码运行效率和可维护性。
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
如何让SQL跑快一点?(优化指南)
这篇文章主要探讨了如何在阿里云MaxCompute(原ODPS)平台上对SQL任务进行优化,特别是针对大数据处理和分析场景下的性能优化。
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
云栖实录 | MaxCompute 迈向下一代的智能云数仓
2024年云栖大会上,阿里云核心自研云原生智能数据仓库产品MaxCompute,在经过一年的深度打磨后,推出了其迈向下一代智能云数据仓的系列主题分享。此次产品发布,充分展示MaxCompute产品领先行业的云数据产品发展理念与核心优势。