破解 vLLM + DeepSeek 规模化部署的“不可能三角”
vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。
Transformer 学习笔记 | Decoder
本文记录了笔者学习Transformer的过程,重点介绍了填充(padding)和掩码(masking)机制。掩码确保解码器只依赖于之前的位置,避免信息泄露,保持因果关系及训练与推理的一致性。通过线性层和softmax函数生成输出概率,并使用梯度下降和反向传播进行训练。评估指标包括BLEU、ROUGE、METEOR和困惑度等。欢迎指正。
破解 vLLM + DeepSeek 规模化部署的“不可能三角”
人工智能产业的蓬勃发展催生了丰富多样的推理模型,为解决特定领域的问题提供了高效的解决方案。DeepSeek 的爆火就是极佳的范例。然而,对于个人用户而言,如何有效地利用这些模型成为一个显著的挑战——尽管模型触手可及,但其复杂的部署和使用流程却让人望而却步。针对这一现象,在大型语言模型(LLM)领域,vLLM 应运而生。通过便捷的模型接入方式,vLLM 让用户能够轻松地向模型发起推理请求,从而大大缩短了从模型到应用的距离。
《工业互联网新玩法:用DeepSeek打造专属智能体》
在工业互联网快速发展的背景下,企业亟需数字化转型以提升竞争力。DeepSeek技术凭借强大的自然语言处理能力和高效的模型训练技术(如FP8混合精度训练和MoE架构优化),助力企业构建智能高效的工业智能体。通过数据收集、模型定制和智能体集成,DeepSeek赋能企业在生产管理、客户服务等方面实现智能化升级,显著提高效率与客户满意度。实际应用案例显示,钢铁企业和机械制造企业均通过DeepSeek实现了显著的业务优化。