算法

首页 标签 算法
# 算法 #
关注
124193内容
|
1天前
| |
来自: 数据库
Zookeeper2.持久化FileTxnLog
本文深入分析ZooKeeper持久化核心类FileTxnLog源码,涵盖事务日志结构、文件格式及关键操作。重点解析append、commit、truncate等方法,揭示日志追加、校验、提交与截断机制,结合TxnLog接口与迭代器实现,全面理解ZooKeeper数据持久化原理。(238字)
17 | 存储系统:从检索技术角度剖析 LevelDB 的架构设计思想
LevelDB是Google开源的高性能键值存储系统,基于LSM树优化,采用跳表、读写分离、SSTable分层与Compaction等技术,结合BloomFilter、索引分离及LRU缓存,显著提升读写效率,广泛应用于工业级系统。
20 | 推荐引擎:没有搜索词,「头条」怎么找到你感兴趣的文章?
每天下拉刷新,资讯App就能推荐你感兴趣的头条,这背后依赖的是推荐引擎的检索技术。与搜索不同,推荐系统通过用户行为构建画像,结合内容标签与协同过滤算法,实现个性化召回。基于内容的推荐匹配兴趣,协同过滤则挖掘用户或物品相似性,再经多层排序筛选出最优结果。混合策略让推荐更精准高效。
特别加餐丨倒排检索加速(二):如何对联合查询进行加速?
本文深入探讨工业界倒排索引中联合查询的四大加速方法:调整次序法通过优化计算顺序提升效率;快速多路归并法利用跳表加速多集合交集运算;预先组合法对高频查询提前计算结果;缓存法则通过LRU机制缓存热点查询,减少重复计算。四种方法从数学、算法与工程角度协同优化复杂检索,显著提升系统性能。
06丨数据库检索:如何使用 B+ 树对海量磁盘数据建立索引?
本节探讨磁盘环境下大规模数据检索的挑战与解决方案,重点解析B+树如何通过索引与数据分离、多阶平衡结构及双向链表优化,实现高效的磁盘I/O利用和范围查询,广泛应用于数据库等工业级系统。
测一测丨检索算法基础,你掌握了多少?
本文介绍了多种数据结构的查询、插入及冲突处理机制。对比了无序与有序数据结构的查询效率,分析了二叉检索树、跳表、哈希表、位图、布隆过滤器和倒排索引的特性与适用场景,涵盖时间空间复杂度、平衡性、遍历性能及实际应用设计原则。(238字)
11|精准 Top K 检索:搜索结果是怎么进行打分排序的?
搜索引擎排序核心在于打分与Top K检索。本文详解三种打分算法:经典TF-IDF衡量词频与区分度;BM25在此基础上引入文档长度、词频饱和等优化,支持参数调节;机器学习则融合上百因子自动学习权重,提升排序精度。最后通过堆排序高效实现Top K结果返回,兼顾性能与效果。适合搜索、推荐等场景。
12 | 非精准 Top K 检索:如何给检索结果的排序过程装上加速器?
本文介绍了非精准Top K检索的优化思路与实现方法,通过简化打分机制提升检索效率。重点讲解了三种加速技术:基于静态质量得分排序截断、胜者表利用词频打分、以及分层索引的两层检索策略。这些方法将计算前置至离线阶段,在线仅做快速截断,大幅降低开销。结合精准排序的两阶段架构,广泛应用于搜索与推荐系统,实现高效召回与精度平衡。
特别加餐 | 倒排检索加速(一):工业界如何利用跳表、哈希表、位图进行加速?
本文深入解析倒排索引中求交集的三大加速技术:跳表、哈希表与位图,并介绍工业级优化方案Roaring Bitmap。通过组合基础数据结构,实现高效检索,揭示复杂系统背后的简洁原理。
19 | 广告系统:广告引擎如何做到在 0.1s 内返回广告信息?
广告系统是互联网核心营收支柱,支撑Google、Facebook等巨头超80%收入。本文详解其高性能引擎架构:通过标签过滤、树形分片、向量检索与非精准打分等技术,在0.1秒内完成百万级广告实时召回与排序,实现千人千面精准投放。
免费试用