量子技术

首页 标签 量子技术
# 量子技术 #
关注
1938内容
|
1天前
|
DeepSeek杀疯了!国产AI大模型如何重构未来技术版图?
【爆款导读】当ChatGPT还在为每月10亿访问量沾沾自喜时,中国AI军团已悄然完成弯道超车。2025年开年,DeepSeek以雷霆之势横扫中美应用商店双榜,上线72小时突破千万DAU,开发者生态激增300%。通过优化算法降低成本、多模态能力提升效率,DeepSeek不仅在用户数量上取得突破,更在实际应用场景中展现强大实力。其开源策略推动技术民主化,助力更多开发者参与AI开发,成为AI军备竞赛中的佼佼者。
|
8天前
|
预定下一个诺奖级AI?谷歌量子纠错AlphaQubit登Nature,10万次模拟实验创新里程碑
谷歌的量子纠错算法AlphaQubit近日登上《自然》杂志,被誉为量子计算纠错领域的重大突破。量子比特易受环境噪声干扰,导致计算错误,而AlphaQubit通过神经网络学习噪声模式,显著提升纠错准确性。实验结果显示,它在Sycamore处理器和Pauli+模拟器上表现优异,优于现有解码算法。尽管面临资源需求高等挑战,AlphaQubit为实用化量子计算带来新希望,并可能推动其他领域创新。论文详见:https://www.nature.com/articles/s41586-024-08148-8
|
9天前
|
诺奖得主哈萨比斯新作登Nature,AlphaQubit解码出更可靠量子计算机
诺贝尔生物学奖得主德米斯·哈萨比斯团队在《自然》杂志发表突破性研究,开发出基于神经网络的量子错误解码器AlphaQubit。该解码器通过学习表面码显著提升量子计算机的可靠性和性能,特别是在处理量子比特脆弱性问题上表现出色。实验表明,AlphaQubit在不同代码距离上均超越现有解码器,为量子计算的实际应用带来希望。然而,其训练数据有限及计算复杂性高仍是挑战。
|
13天前
|
《深度揭秘:拉普拉斯平滑在朴素贝叶斯算法中的关键作用与参数选择之道》
朴素贝叶斯算法在文本分类、情感分析等领域广泛应用,但常遇零概率问题,即某些特征从未与特定类别同时出现,导致条件概率为零,影响模型准确性。拉普拉斯平滑通过在计数上加一小正数(如α=1),避免了零概率问题,提升了模型的稳定性和泛化能力。选择合适的平滑参数α至关重要:经验法则通常设α=1;交叉验证可找到最优α值;根据数据规模和特征分布调整α也能有效提升模型性能。
|
21天前
|
《攻克新兴领域实体识别难题,NER技术突围之路》
命名实体识别(NER)是自然语言处理的基础任务,旨在从文本中识别特定实体。传统NER在常见领域表现良好,但在新兴领域如元宇宙、量子计算等面临挑战,主要因新术语频出且缺乏标注数据。为提升新兴领域的NER识别率,研究者探索了数据增强、迁移学习、多模态融合及领域自适应等方法,以应对数据匮乏、专业性强等问题,推动NER技术在前沿领域的应用与发展。
|
1月前
|
《鸿蒙系统AI技术:开启元宇宙与量子计算的无限可能》
鸿蒙系统的人工智能技术在元宇宙和量子计算等新兴领域展现出巨大潜力。在元宇宙中,AI可构建沉浸式虚拟环境、实现智能交互、助力虚拟经济管理;在量子计算方面,AI能加速模型训练、优化算法、推动量子人工智能融合发展。尽管面临隐私、安全及技术稳定性挑战,但其应用前景广阔,有望为用户带来更智能、便捷、安全的体验,推动科技与社会进步。
|
1月前
|
《量子比特:解锁人工智能并行计算加速的密钥》
量子计算与人工智能的融合正带来变革性突破。量子比特通过叠加特性可同时处于多种状态,极大提高计算效率;纠缠特性使量子比特间信息共享,实现并行计算。二者结合为AI算法提供前所未有的加速,推动神经网络训练和复杂问题处理的高效性。尽管面临环境干扰等挑战,量子比特仍为未来AI发展带来巨大潜力和创新机遇。
|
1月前
|
《量子计算硬件:关键指标对人工智能应用性能的影响》
量子计算硬件的关键技术指标对人工智能性能至关重要。量子比特数量决定信息处理规模,更多量子比特可加速机器学习、提升模型精度;相干时间保障量子态稳定,延长其能提高计算可靠性;门保真度确保操作准确,高保真度增强计算精度与容错能力。其他如耦合强度、噪声水平等也协同作用,共同影响性能。优化这些指标将推动AI发展。
|
1月前
|
《量子机器学习:构建量子版神经网络模型》
量子计算与机器学习的融合带来了新机遇。量子卷积神经网络利用量子比特的叠加和纠缠特性,高效处理大规模数据,提升特征提取速度与泛化能力。量子循环神经网络则擅长处理复杂序列数据,通过量子比特状态传递信息,增强计算效率。设计量子神经网络需考虑量子比特选择、状态、操作及网络结构,尽管面临外界干扰等挑战,该模型在图像识别、语音识别等领域展现巨大潜力,未来将推动更多创新。
|
1月前
|
《量子硬件制造:降低退相干率与错误率的策略》
量子计算硬件发展中,量子比特的退相干率和错误率是关键挑战。退相干使量子比特失去相干性,影响计算准确性;错误率增加则导致结果偏差。为降低退相干率,需优化环境(低温、低噪声)、隔离技术、量子纠错码及优化设计。降低错误率则依赖提高量子比特质量、优化操作、加强监测和容错能力。综合这些策略,可提升量子计算的稳定性和可靠性,推动其高效运行与发展。
免费试用