PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4728内容
|
14天前
|
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
|
14天前
|
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
|
16天前
| |
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
|
16天前
|
【AI系统】ESPNet 系列
本文介绍了ESPNet系列,专注于高分辨率图像的语义分割,强调了其高效的计算性能和低内存、功耗特性。ESPNet V1提出了ESP模块,通过分解标准卷积为point-wise卷积和空洞卷积金字塔,大幅减少了参数量和计算成本。ESPNet V2则进一步优化,采用了分组卷积和深度空洞分离卷积,增强了模型的有效感受野,同时降低了浮点计算量,适用于多种视觉任务。
|
16天前
|
【AI系统】昇腾推理引擎 MindIE
本文详细介绍华为昇腾推理引擎 MindIE,涵盖其基本介绍、关键功能特性及三大组件:MindIE-Service、MindIE-Torch 和 MindIE-RT。文章深入探讨了各组件在服务化部署、大模型推理和推理运行时方面的功能和应用场景,旨在帮助读者全面了解 MindIE 如何支持 AI 业务的高效运行和模型的快速部署。
AscendC从入门到精通系列(四)使用Pybind调用AscendC算子
本文介绍了如何通过Pybind11在PyTorch框架中调用自定义的Ascend C算子。首先,通过编写算子的C++实现和pybind11封装,将算子功能暴露给Python。接着,构建Python调用脚本,利用torch接口生成数据并调用封装好的算子模块。最后,通过CMake配置文件编译整个项目,实现从算子开发到测试的完整流程。
ATB是什么?
ATB加速库专为华为Ascend AI处理器设计,针对Transformer模型的训练和推理进行了深度优化。它通过算法、硬件和软件层面的优化,大幅提升模型性能,降低能耗与成本。ATB支持PyTorch、MindSpore等多种框架,提供高效的基础算子及图算子技术,适用于各种应用场景。其软件架构主要包括基础Operation、Plugin机制和Graph Frame三部分,通过优化算子计算和数据传输,实现性能的显著提升。
Ascend Extension for PyTorch是个what?
Ascend Extension for PyTorch 是针对华为昇腾处理器的PyTorch框架适配插件,旨在让PyTorch开发者能充分利用昇腾AI处理器的强大计算能力。此扩展通过最小化对原生PyTorch的改动,实现了对昇腾NPU的支持,包括动态图特性、自动微分等功能的完整继承,并提供了与原生PyTorch一致的使用体验。项目详情及源码可在昇腾社区获取。
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
StableAnimator:复旦联合微软等机构推出的端到端身份一致性视频扩散框架
StableAnimator是由复旦大学、微软亚洲研究院、虎牙公司和卡内基梅隆大学联合推出的端到端身份一致性视频扩散框架。该框架能够根据一张参考图像和一系列姿态,直接合成高保真度且保持人物身份一致性的视频,无需任何后处理工具。本文详细介绍了StableAnimator的主要功能、技术原理以及如何运行该框架。
免费试用