PAI-TurboX:面向自动驾驶的训练推理加速框架
PAI-TurboX 为自动驾驶场景中的复杂数据预处理、离线大规模模型训练和实时智能驾驶推理,提供了全方位的加速解决方案。PAI-Notebook Gallery 提供PAI-TurboX 一键启动的 Notebook 最佳实践
人机融合智能 | 以人为中心的人工智能伦理体系
本章探讨“以人为中心”的人工智能伦理体系,分析人工智能伦理与传统伦理学的关系、主要分支内容及核心原则。随着人工智能技术快速发展,其在推动社会进步的同时也引发了隐私、公平、责任等伦理问题。文章指出,人工智能伦理需融入传统伦理框架,并构建适应智能技术发展的新型伦理规范体系,以确保技术发展符合人类价值观和利益。
编程简单了,部署依旧很难|Karpathy 演讲的 5 点解读
本文总结了 Andrej Karpathy 在 YC AI Startup School 的分享核心观点,涵盖软件发展的三个阶段、LLM 的定位与挑战、Agent 的产品工程思路以及编程与部署的未来趋势。内容适合 AI 领域从业者参考,强调通过提升工程能力实现 AI 应用的稳定性与可控性。完整视频链接附于文末,便于深入学习。
人机融合智能 | 人智交互中的机器行为设计与管理
本文探讨了以人工智能为代表的智能机器行为研究,强调其对人类社会、文化和经济的深远影响。文章从人-自然-人造物的整合系统视角,将智能机器视为具有独特行为模式和生态反应的个体,分析其与传统非智能机器的区别。通过心理学、社会学及动物行为学等多学科交叉方法,深入探讨智能机器的行为机制、适应性及进化特性,为设计和管理智能机器提供理论支持与实践指导。文中结合具体案例,阐述人智交互的重要性,并提出有效管控机器行为的设计原则,推动人工智能良性发展,规避潜在风险。
基于云模型的车辆行驶速度估计算法matlab仿真
本项目基于云模型的车辆行驶速度估计算法,利用MATLAB2022A实现仿真。相比传统传感器测量方法,该算法通过数据驱动与智能推理间接估计车速,具备低成本、高适应性特点。核心程序通过逆向正态云发生器提取样本数据的数字特征(期望、熵、超熵),再用正向云发生器生成云滴进行速度估算。算法结合优化调整云模型参数及规则库更新,提升速度估计准确性。验证结果显示,其估算值与高精度传感器测量值高度吻合,适用于交通流量监测、安全预警等场景。
基于Astar的复杂栅格地图路线规划算法matlab仿真
本项目基于A*算法实现复杂栅格地图的路径规划,适用于机器人导航、自动驾驶及游戏开发等领域。通过离散化现实环境为栅格地图,每个栅格表示空间区域属性(如可通行性)。A*算法利用启发函数评估节点,高效搜索从起点到终点的近似最优路径。项目在MATLAB2022a中运行,核心程序包含路径回溯与地图绘制功能,支持障碍物建模和路径可视化。理论结合实践,该方法具有重要应用价值,并可通过技术优化进一步提升性能。
与阿里合作的《人工智能(导论)》出版编辑中
《人工智能导论——深度学习大模型基础》由赵卫东编著,清华大学出版社出版。本书旨在帮助读者理解深度学习与大模型技术的底层逻辑,通过机器视觉、语音处理及自然语言处理等章节,结合实际应用场景,深入浅出地讲解相关理论。书中引入低代码开发平台和云端实验室资源,助力读者实践所学。无论专业背景如何,本书都能成为进入AI领域的理想入门书籍。特别感谢阿里云及参与编校工作的同学们的支持。
合成数据也能通吃真实世界?首个融合重建-预测-规划的生成式世界模型AETHER开源
上海人工智能实验室开源了生成式世界模型AETHER,该模型仅用合成数据训练,却能在真实环境中展现强大的零样本泛化能力。AETHER首创「重建—预测—规划」一体化框架,融合几何重建与生成建模,大幅提升模型在动态环境中的决策、规划和预测能力。其核心技术包括目标导向视觉规划、4D动态重建和动作条件视频预测,实验结果表明其性能达到或超越现有SOTA水平。论文、模型及项目主页均已开源。
基于生成式物理引擎的AI模型训练方法论
本文探讨了基于生成式物理引擎的AI模型训练方法论,旨在解决传统数据采集高成本、低效率的问题。生成式物理引擎结合物理建模与生成模型(如GAN、Diffusion),可模拟现实世界的力学规律,生成高质量、多样化的虚拟数据。文章介绍了其关键技术,包括神经网络物理建模、扩散模型场景生成及强化学习应用,并分析了其在机器人学习、数据增强和通用智能体训练中的实践价值。未来,随着可微物理引擎、跨模态生成等技术发展,生成式物理引擎将助力AI从静态监督学习迈向动态交互式世界建模,推动通用人工智能的实现。