自动驾驶

首页 标签 自动驾驶
# 自动驾驶 #
关注
6326内容
|
9月前
|
《深度Q网络优化:突破高维连续状态空间的束缚》
深度Q网络(DQN)结合了深度学习与强化学习,解决了高维状态空间下Q表的存储和计算难题。然而,在高维连续状态空间中,DQN面临训练不稳定、收敛慢等问题。优化策略包括改进神经网络结构(如使用CNN、RNN或Transformer)、引入注意力机制、采用优先经验回放(PER)及调整目标网络更新策略等。这些方法提高了DQN在自动驾驶、机器人操作等复杂任务中的性能,未来有望在更多领域取得突破。
|
9月前
|
《LSTM:开启图像动态场景理解与时间变化信息捕捉的新旅程》
在计算机视觉中,理解图像动态场景并捕捉时间变化信息极具挑战。LSTM作为一种深度学习模型,通过将图像帧序列化并结合CNN提取的空间特征,有效捕捉帧间的时间依赖关系。LSTM的门控机制(遗忘门、输入门和输出门)能智能处理图像序列中的信息,过滤无关数据,保留关键变化。该方法广泛应用于自动驾驶、视频监控及虚拟现实等领域,提升了动态场景的理解与预测能力。
|
9月前
|
续命Scaling Law?世界模型GPT-4o让智能体超级规划,OSU华人一作
GPT-4o是OpenAI推出的先进语言模型,不仅在自然语言处理上表现出色,更在智能体规划领域展现了巨大潜力。它能模拟预测行动结果,提供决策支持,实现高效智能规划。适用于自动驾驶、机器人等领域,助力复杂任务的优化执行。尽管面临计算资源和环境一致性等挑战,GPT-4o仍为智能体规划带来新机遇。论文地址:https://arxiv.org/abs/2411.06559
|
9月前
|
《打破壁垒:卷积神经网络与循环神经网络的融合新篇》
在人工智能发展中,处理复杂时序图像/视频数据是难题。CNN擅长提取图像空间特征(如物体形状、位置),RNN/LSTM则善于捕捉时间依赖关系,解决长序列数据的梯度问题。两者结合,先用CNN提取每帧图像特征,再通过RNN/LSTM分析时间变化,可高效处理视频动作识别、自动驾驶等任务,融合空间与时序优势,展现巨大应用潜力。
|
9月前
|
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
9月前
|
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
9月前
|
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
9月前
|
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
9月前
|
《5G赋能:朴素贝叶斯算法的实时进化与场景拓展》
5G技术以其高速率、低时延、大连接特性,推动各行业变革。在实时数据处理方面,5G为朴素贝叶斯算法插上翅膀,大幅提升数据传输速度和实时性,保障决策响应即时化,并支持大规模多维度数据处理。5G助力下,该算法在智能交通、远程医疗、工业互联网等领域展现全新活力,实现更精准的分析与预测,为社会发展带来创新与便利。
|
10月前
|
《深度剖析:Q-learning为何被归为无模型强化学习算法》
Q-learning是无模型的强化学习算法,不依赖环境模型,而是通过与环境实时交互学习最优策略。它通过更新状态-动作值函数(Q函数)来评估行动价值,适用于多变环境,具有灵活性和简单性优势。然而,Q-learning探索效率较低,样本复杂性高,需大量尝试才能找到有效策略。这种特性使其在实际应用中既有机会也有挑战。
免费试用