自动驾驶

首页 标签 自动驾驶
# 自动驾驶 #
关注
6298内容
Migician:清北华科联手放大招!多图像定位大模型问世:3秒锁定跨画面目标,安防监控迎来AI革命!
Migician 是北交大联合清华、华中科大推出的多模态视觉定位模型,支持自由形式的跨图像精确定位、灵活输入形式和多种复杂任务。
基于LLM打造沉浸式3D世界
阿里云数据可视化产品DataV团队一直在三维交互领域进行前沿探索,为了解决LLMs与3D结合的问题,近期在虚幻引擎内结合通义千问大模型家族打造了一套基于LLM的实时可交互3D世界方案,通过自然语言来与引擎内的3D世界进行交互。
DynamicCity:上海AI Lab开源4D场景神器助力自动驾驶场景!128帧动态LiDAR生成,1:1还原城市早晚高峰
DynamicCity 是上海 AI Lab 推出的 4D 动态场景生成框架,专注于生成具有语义信息的大规模动态 LiDAR 场景,适用于自动驾驶、机器人导航和交通流量分析等多种应用场景。
企业内训新范式:从“知识传递”到“战略杠杆”,如何实现培训价值倍增?
据2024年《中国企业培训白皮书》显示,超过68%的央国企和上市公司已将“业务场景实战”作为内训核心指标,而传统通用型课程采购量同比下降27%。在这场变革中,如何让培训从“知识传递”进化为“战斗力转化”? 本文将结合近两年先锋案例,拆解一套可落地的内训体系构建方法论。
|
7月前
|
《解锁深度Q网络新姿势:非马尔可夫环境难题》
深度Q网络(DQN)结合深度学习与Q学习,在Atari游戏等领域取得显著成绩,但在非马尔可夫环境中面临挑战。传统DQN基于马尔可夫决策过程(MDP),假设未来状态仅依赖当前状态和动作,忽视历史信息,导致在复杂环境中表现不佳。为此,研究人员提出了三种改进策略:1) 记忆增强型DQN,引入LSTM等记忆模块;2) 基于模型的强化学习结合,通过预测环境动态提升决策准确性;3) 多智能体协作与信息共享,利用多个智能体共同感知和决策。实验表明,这些改进有效提升了DQN在非马尔可夫环境中的性能,但计算复杂度和模型可解释性仍是未来研究的重点。
|
7月前
|
《深度Q网络遇上注意力机制:解锁强化学习新高度》
深度Q网络(DQN)结合深度学习与Q学习,在复杂决策问题如Atari游戏上超越人类水平。然而,传统DQN在处理复杂环境时存在局限,难以聚焦关键信息。引入注意力机制后,DQN能更好地提取状态特征、优化动作价值评估,并解决时间序列依赖问题。实验表明,改进后的DQN在游戏和机器人操作任务中表现出色,提升了决策效率和准确性。尽管面临计算复杂度等挑战,未来有望通过硬件提升和算法优化进一步推动其应用与发展。
|
7月前
|
《深度剖析:设计最优深度Q网络结构,精准逼近Q值函数》
深度Q网络(DQN)结合深度学习与Q学习,通过神经网络逼近Q值函数,指导智能体在不同状态下选择最优动作。其核心优势在于解决高维状态空间下的决策问题,利用经验回放机制和目标网络提高训练稳定性。设计高效DQN需考虑输入层、隐藏层及输出层结构,针对不同任务选择合适的网络架构,如CNN处理图像数据,MLP应对数值型状态。案例分析显示,在CartPole和Atari游戏中,DQN通过优化网络结构和策略,取得了显著效果。未来研究将聚焦于更智能的网络设计和跨领域技术融合,拓展DQN的应用范围。
|
7月前
|
《深度Q网络:在非平稳环境中破局与进化》
深度Q网络(DQN)在平稳环境中表现出色,但在非平稳环境下面临诸多挑战。例如,自动驾驶和金融市场中的动态变化导致Q值函数失效和数据分布漂移,使DQN难以适应。为此,研究者提出了改进经验回放机制、动态调整学习率和引入多模型融合等策略,以增强DQN的适应性。实际案例表明,这些改进显著提升了DQN在智能交通和工业控制中的表现。未来,进一步优化DQN在非平稳环境下的学习策略仍是关键研究方向。
|
7月前
|
《深度Q网络优化:突破高维连续状态空间的束缚》
深度Q网络(DQN)结合了深度学习与强化学习,解决了高维状态空间下Q表的存储和计算难题。然而,在高维连续状态空间中,DQN面临训练不稳定、收敛慢等问题。优化策略包括改进神经网络结构(如使用CNN、RNN或Transformer)、引入注意力机制、采用优先经验回放(PER)及调整目标网络更新策略等。这些方法提高了DQN在自动驾驶、机器人操作等复杂任务中的性能,未来有望在更多领域取得突破。
免费试用