CPU反超NPU,llama.cpp生成速度翻5倍!LLM端侧部署新范式T-MAC开源
【9月更文挑战第7天】微软研究院提出了一种名为T-MAC的创新方法,旨在解决大型语言模型在资源受限的边缘设备上高效部署的问题。T-MAC通过查表法在CPU上实现低比特LLM的高效推理,支持混合精度矩阵乘法,无需解量化。其通过位级查表实现统一且可扩展的解决方案,优化数据布局和重用率,显著提升了单线程和多线程下的mpGEMV及mpGEMM性能,并在端到端推理吞吐量和能效方面表现出色。然而,表量化和快速聚合技术可能引入近似和数值误差,影响模型准确性。论文详见:[链接](https://www.arxiv.org/pdf/2407.00088)。
硬件加速器中的神经网络
硬件加速器中的神经网络指的是通过专门设计的硬件设备来加速深度神经网络(DNN)和其他机器学习模型的训练和推理过程。
面向高效能计算的深度学习框架优化策略
【8月更文第9天】随着深度学习在各个领域的广泛应用,对训练模型的速度和效率要求越来越高。为了满足这些需求,深度学习框架需要针对不同硬件平台进行优化。本文将探讨针对GPU、TPU等硬件平台的优化策略,重点关注数据传输效率、并行计算策略及内存管理等方面。