云卓越架构:稳定性支柱整体解决方案综述
阿里云卓越架构聚焦于五大支柱,其中稳定性是关键。常见的云上稳定性风险包括架构单点、容灾设计不足和容量规划不合理等。为提升稳定性,需从架构设计时考虑容灾与容错、实施变更时遵循“三板斧”原则(灰度发布、可观测性和可回滚性),并确保快速响应和恢复能力。此外,通过客观度量、主观评估和巡检等方式识别风险,并进行专项治理。识货APP作为成功案例,通过优化容器化改造、统一发布体系、告警系统和扩缩容机制,实现了99.8%的高可用率,大幅提升了业务稳定性。
写着简单和跑得快是一回事,SQL 为什么不可能跑得快?
本文探讨了代码性能优化的重要性及实现方法。通过对比SQL与SPL(esProc Structured Process Language)在处理大数据查询时的效率差异,指出SQL在复杂查询中存在性能瓶颈,如全排序操作导致的低效问题。而SPL凭借其集合化和离散性特性,能够以更简洁的语法实现高效的算法设计,显著提升运行速度。例如,从1亿条数据中取前10名或进行分组TopN计算,SPL不仅代码量大幅减少,还能避免不必要的排序操作,实测显示其执行速度远超SQL。此外,SPL还支持复杂的漏斗分析等场景,进一步证明其在高性能计算领域的优势。SPL现已开源免费,值得开发者关注。
手把手进行数据分析,解锁游戏行为画像
本文介绍了一套利用阿里云E-MapReduce StarRocks版进行游戏玩家画像和行为分析的完整流程,旨在帮助开发者构建高性能、低成本的游戏数据分析平台。
基于PolarDB的图分析:银行金融领域图分析实践
本文介绍了如何使用阿里云PolarDB PostgreSQL版及其图数据库引擎(兼容Apache AGE,A Graph Extension)进行图数据分析,特别针对金融交易欺诈检测场景。PolarDB PostgreSQL版支持图数据的高效处理和查询,包括Cypher查询语言的使用。文章详细描述了从数据准备、图结构创建到具体查询示例的过程,展示了如何通过图查询发现欺诈交易的关联关系,计算交易间的Jaccard相似度,从而进行欺诈预警。
Lindorm:AI和具身智能时代的海量多模数据服务
本次分享由阿里云资深技术专家沈春辉介绍Lindorm数据库在AI和具身智能时代的应用。Lindorm定位于提供海量多模数据服务,融合了结构化、半结构化及非结构化数据的处理能力,支持时序、地理位置、文本、向量等多种数据类型。其核心特点包括多模一体化、云原生分布式架构、异步攒批写入、冷热数据分离、深度压缩优化、丰富索引和Serverless计算等,旨在提升研发效率并降低成本。Lindorm已广泛应用于车联网领域,覆盖60%国内头部车企,支撑近百PB数据规模,带来90%业务成本下降。
智能导购AI助手测评 | 替代未来客服的保障方案
阿里云推出的主动式智能导购AI助手,采用Multi-Agent架构,通过规划助理、商品导购助理和历史对话信息,为顾客提供个性化的产品推荐。无论是商家还是顾客,都能从中受益。它不仅帮助顾客在购买不熟悉的产品时做出明智选择,还让商家更高效地服务客户。开发者可快速部署,使用便捷,大大降低AI技术门槛。