分布式计算

首页 标签 分布式计算
# 分布式计算 #
关注
37751内容
分布式×多模态:当ODPS为AI装上“时空穿梭”引擎
本文深入探讨了多模态数据处理的技术挑战与解决方案,重点介绍了基于阿里云ODPS的多模态数据处理平台架构与实战经验。通过Object Table与MaxFrame的结合,实现了高效的非结构化数据管理与分布式计算,显著提升了AI模型训练效率,并在工业质检、多媒体理解等场景中展现出卓越性能。
阿里云数据传输服务使用场景
阿里云数据传输服务(DTS)的核心优势在于其支持多种数据传输方式(迁移、同步、订阅),能够满足企业在数据库迁移、灾备、实时数仓构建、业务解耦等场景下的需求。无论是优化用户体验、降低使用成本,还是实现跨账号任务授权,DTS均提供了完整的解决方案
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
Java 大视界 -- Java 大数据在智能教育在线考试监考与作弊检测中的技术创新(193)
本文探讨了Java大数据技术在智能教育在线考试监考与作弊检测中的创新应用。随着在线考试的普及,作弊问题日益突出,传统监考方式难以应对。通过Java大数据技术,可实现考生行为分析、图像识别等多维度监控,提升作弊检测的准确性与效率。结合Hadoop与Spark等技术,系统能实时处理海量数据,构建智能监考体系,保障考试公平性,推动教育评价体系的数字化转型。
Java 大视界 -- Java 大数据在智慧养老服务需求分析与个性化服务匹配中的应用(186)
本篇文章探讨了Java大数据技术在智慧养老服务需求分析与个性化服务匹配中的应用。通过整合老年人健康数据与行为数据,结合机器学习与推荐算法,实现对老年人健康风险的预测及个性化服务推荐,提升养老服务的智能化与精准化水平,助力智慧养老高质量发展。
AI 大模型时代的网络架构演进
​2025 年 7 月 26 日,第二届中国计算机学会(CCF)分布式计算大会暨中国算力网大会(CCF Computility 2025)在甘肃兰州隆重召开。大会以“算力网:新质生产力背景下的分布式系统”为主题,吸引了来自学术界与产业界的 1200 余位专家学者、行业代表齐聚一堂,共探分布式计算与算力网络的前沿技术与未来趋势。
|
2月前
|
ODPS 在 AI 时代的引领潜力与突破方向分析
阿里云 ODPS 凭借超大规模数据处理、多模态架构与 Data+AI 融合优势,正引领 AI 时代数据革命。其弹性算力支撑大模型训练,多模态处理提升数据利用率,AI 工程化能力完善。但实时性、边缘计算与跨云协同仍存短板。未来将重点突破智能数据编织、异构计算调度、隐私增强平台与边缘云端协同,加速行业落地。结合绿色计算与开放生态,ODPS 有望成为 AI 驱动的数据基础设施核心。
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
免费试用