并行计算

首页 标签 并行计算
# 并行计算 #
关注
5088内容
2025年阿里云弹性裸金属服务器架构解析与资源配置方案
🚀 核心特性与技术创新:提供100%物理机性能输出,支持NVIDIA A100/V100 GPU直通,无虚拟化层损耗。网络与存储优化,400万PPS吞吐量,ESSD云盘IOPS达100万,RDMA延迟<5μs。全球部署覆盖华北、华东、华南及海外节点,支持跨地域负载均衡。典型应用场景包括AI训练、科学计算等,支持分布式训练和并行计算框架。弹性裸金属服务器+OSS存储+高速网络综合部署,满足高性能计算需求。
基于HPC场景的集群任务调度系统LSF/SGE/Slurm/PBS
在HPC场景中,集群任务调度系统是资源管理和作业调度的核心工具。LSF、SGE、Slurm和PBS是主流调度系统。LSF适合大规模企业级集群,提供高可靠性和混合云支持;SGE为经典开源系统,适用于中小规模集群;Slurm成为HPC领域事实标准,支持多架构和容器化;PBS兼具商业和开源版本,擅长拓扑感知调度。选型建议:超大规模科研用Slurm,企业生产环境用LSF/PBS Pro,混合云需求选LSF/PBS Pro,传统小型集群用SGE/Slurm。当前趋势显示Slurm在TOP500系统中占比超60%,而商业系统在金融、制造等领域保持优势。
|
7天前
|
《深度解析:自注意力卷积神经网络的原理与卓越优势》
自注意力卷积神经网络融合了自注意力机制和卷积神经网络的优势,通过在特征图上动态分配注意力权重,捕捉长距离依赖关系。它不仅提升了局部特征提取能力,还能更好地理解全局结构与语义信息,在图像识别、自然语言处理等任务中表现出色。此外,该模型计算效率高、灵活性强、适应性广,并且易于扩展与其他技术结合,具有广泛的应用前景。
BEN2:一键快速抠图!自动移除图像和视频中的背景,支持在线使用
BEN2 是由 Prama LLC 开发的深度学习模型,专注于从图像和视频中快速移除背景并提取前景,支持高分辨率处理和GPU加速。
|
7天前
|
RT-DETR改进策略【Neck】| 有效且轻量的动态上采样算子:DySample
RT-DETR改进策略【Neck】| 有效且轻量的动态上采样算子:DySample
|
7天前
|
RT-DETR改进策略【RT-DETR和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制
RT-DETR改进策略【RT-DETR和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制
|
9天前
|
YOLOv11改进策略【Neck】| 有效且轻量的动态上采样算子:DySample
YOLOv11改进策略【Neck】| 有效且轻量的动态上采样算子:DySample
图机器学习调研洞察:PyG与DGL
图神经网络(GNN)是人工智能领域的研究热点,广泛应用于社交网络、电商推荐、欺诈检测等。主流开源图学习引擎如DGL、PyG、GraphScope等在性能和社区活跃度上各有优劣。基于ogbn-products数据集的测试显示,DGL性能最优、内存占用最低,PyG次之。在AI for Science领域,PyG应用更广泛,尤其在小分子和晶体结构预测中表现突出。DGL采用Graph Centric方式,保留图结构;PyG则采用Tensor Centric方式,适合小图场景。
Qwen2.5-1M: 支持100万Tokens上下文的开源Qwen模型
两个月前,Qwen团队升级了 Qwen2.5-Turbo,使其支持最多一百万个Tokens的上下文长度。今天,Qwen正式推出开源的 Qwen2.5-1M 模型及其对应的推理框架支持。
|
11天前
|
YOLOv11改进策略【YOLO和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制
YOLOv11改进策略【YOLO和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制
免费试用