一文详解容器服务面向大模型和 AI Agent 的技术变革
在生成式人工智能迅猛发展的浪潮下,企业应用正加速从模型研究走向业务落地。无论是大规模的数据处理、超大参数模型的训练与推理,还是部署能够自动完成任务的 AI Agent,这些场景都需要稳定、高效且可弹性伸缩的资源调度与管理能力。容器凭借环境一致性、跨平台部署和高效调度等优势,天然契合 AI 场景对多样化算力、快速迭代和规模化分发的要求,成为 AI 时代事实上的原生基石。然而,要满足在生产规模下的需求,产品及技术形态需随之演进。
AI测试开发工程师面试指南:20个核心技术问题及思路解析
霍格沃兹测试开发学社总结AI测试开发岗位面试要点。面试重点考察模型验证、性能优化、MLOps落地等工程能力。建议结合项目经验,展示从需求到上线的全流程实践经验,并通过量化指标体现技术价值。同时需掌握特征工程、模型监控及前沿技术应用,系统提升综合竞争力。
从帧到世界:面向世界模型的长视频生成
《从帧到世界》介绍面向世界模型的长视频生成新范式MMPL,由南京大学范琦团队提出。该方法通过“微观规划+宏观规划”双阶段策略,解决传统生成中的时域漂移与串行瓶颈,实现高物理合理性、强时空连贯的长视频生成,支持并行加速,为世界模型提供认知与预测世界的AI基础设施。