异构计算

首页 标签 异构计算
# 异构计算 #
关注
19267内容
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
45_混合专家模型:MoE架构详解
在大语言模型的发展历程中,参数规模的扩张一直被视为提升性能的主要途径。然而,随着模型参数达到数百亿甚至数千亿级别,传统的密集型模型架构面临着计算资源、训练效率和推理速度等诸多挑战。2025年,混合专家模型(Mixture of Experts,MoE)已成为突破这些限制的关键技术路径。
55_大模型部署:从云端到边缘的全场景实践
随着大型语言模型(LLM)技术的飞速发展,从实验室走向产业化应用已成为必然趋势。2025年,大模型部署不再局限于传统的云端集中式架构,而是向云端-边缘协同的分布式部署模式演进。这种转变不仅解决了纯云端部署在延迟、隐私和成本方面的痛点,还为大模型在各行业的广泛应用开辟了新的可能性。本文将深入剖析大模型部署的核心技术、架构设计、工程实践及最新进展,为企业和开发者提供从云端到边缘的全场景部署指南。
65_GPU选择:A100 vs RTX系列
在2025年的今天,大语言模型(LLM)已经成为人工智能领域的核心技术之一。从GPT-4到Llama 3.1,从专业领域应用到消费级产品,LLM正在以前所未有的速度改变着我们的工作和生活方式。然而,这些强大模型的训练和部署背后,都离不开高性能计算硬件的支持,尤其是GPU(图形处理单元)的选择,往往直接决定了项目的可行性、效率和成本。
56_大模型微调:全参数与参数高效方法对比
随着大型语言模型(LLM)规模的不断增长,从数百亿到数千亿参数,传统的全参数微调方法面临着计算资源消耗巨大、训练效率低下等挑战。2025年,大模型微调技术已经从早期的全参数微调发展到如今以LoRA、QLoRA为代表的参数高效微调方法,以及多种技术融合的复杂策略。本文将深入对比全参数微调和参数高效微调的技术原理、适用场景、性能表现和工程实践,为研究者和工程师提供全面的技术参考。
75_TPU集成:Google Cloud加速
在大型语言模型(LLM)训练和推理的竞赛中,计算硬件的选择直接决定了研发效率和成本。Google的Tensor Processing Unit(TPU)作为专为AI计算设计的专用芯片,正逐渐成为大规模LLM开发的首选平台之一。随着2025年第七代TPU架构Ironwood的发布,Google在AI计算领域再次确立了技术领先地位。
90_推理优化:性能调优技术
随着大型语言模型(LLM)规模的不断扩大和应用场景的日益复杂,推理性能已成为制约模型实际部署和应用的关键因素。尽管大模型在各项任务上展现出了令人惊艳的能力,但其庞大的参数量和计算需求也带来了严峻的性能挑战。在资源受限的环境中,如何在保持模型效果的同时,最大化推理性能,成为了研究人员和工程师们亟待解决的核心问题。
79_边缘设备环境:Raspberry Pi搭建
在当今人工智能快速发展的时代,大语言模型(LLM)已经成为自然语言处理领域的核心技术。然而,传统的LLM部署通常需要强大的服务器资源,这限制了其在资源受限环境中的应用。随着边缘计算的兴起,在轻量级设备上部署和运行LLM成为了新的技术趋势。树莓派(Raspberry Pi)作为一款广泛使用的单板计算机,凭借其小巧的体积、低功耗特性和不断提升的计算能力,成为了边缘部署LLM的理想选择。
64_模型部署:推理优化策略
随着人工智能技术的飞速发展,大型语言模型(LLM)在自然语言处理、多模态理解等领域展现出惊人的能力。然而,将这些模型从实验室环境部署到实际生产系统中,面临着诸多挑战。根据2025年最新研究数据,大模型部署的主要挑战包括:
59_实时性模型:选择低延迟LLM
在当今快速发展的人工智能领域,大型语言模型(LLM)的应用正迅速渗透到各个行业。随着企业对AI响应速度的要求不断提高,低延迟LLM的选择与优化已成为技术团队面临的关键挑战。实时聊天机器人、智能客服、自动驾驶辅助系统等场景对响应时间提出了极高的要求,毫秒级的延迟差异可能直接影响用户体验和业务效率。2025年,随着推理优化技术的突破性进展,低延迟LLM已不再是难以企及的目标,而是成为实际生产环境中的标准配置。
免费试用