97_微调基础:全参数 vs LoRA
在2025年的大模型时代,微调技术已经成为将通用大语言模型(LLM)适配到特定领域和任务的核心技术手段。随着模型规模的不断膨胀——从早期的数十亿参数到如今的数千亿甚至万亿参数,如何在有限的计算资源下高效地微调大模型,成为AI工程师面临的关键挑战。本文将深入探讨两种主流的微调方法:全参数微调和LoRA(Low-Rank Adaptation)低秩适应微调,从原理、技术实现、资源需求、性能表现等多个维度进行全面对比分析,帮助读者在实际项目中做出最优的技术选择。
98_数据增强:提升LLM微调效果的关键技术
在大语言模型(LLM)的微调过程中,数据质量与数量往往是决定最终性能的关键因素。然而,获取高质量、多样化且标注准确的训练数据却常常面临诸多挑战:数据标注成本高昂、领域特定数据稀缺、数据分布不均等问题都会直接影响微调效果。在这种背景下,数据增强技术作为一种能够有效扩充训练数据并提升其多样性的方法,正发挥着越来越重要的作用。
35_BERT与RoBERTa:优化编码器模型
2018年,Google发布的BERT(Bidirectional Encoder Representations from Transformers)模型彻底改变了自然语言处理领域的格局。作为第一个真正意义上的双向预训练语言模型,BERT通过创新的掩码语言模型(Masked Language Model, MLM)预训练策略,使模型能够同时从左右两侧的上下文信息中学习语言表示,从而在多项NLP任务上取得了突破性进展。
31_NLP数据增强:EDA与NLPAug工具
在自然语言处理(NLP)领域,高质量的标注数据是构建高性能模型的基础。然而,获取大量准确标注的数据往往面临成本高昂、耗时漫长、覆盖度不足等挑战。2025年,随着大模型技术的快速发展,数据质量和多样性对模型性能的影响愈发显著。数据增强作为一种有效扩充训练样本的技术手段,正成为解决数据稀缺问题的关键策略。
29_序列标注技术详解:从HMM到深度学习
序列标注(Sequence Labeling)是自然语言处理(NLP)中的一项基础任务,其目标是为序列中的每个元素分配一个标签。在NLP领域,序列标注技术广泛应用于分词、词性标注、命名实体识别、情感分析等任务。
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
数据清洗必看的7个要点
数据清洗是确保分析准确的关键。本文详解七大要点:了解数据、处理缺失值、去重、统一格式、处理异常值、转换类型及验证逻辑一致性,助你打好数据分析基石,避免“垃圾进垃圾出”。
除了Kettle,这款国产ETL工具是否更胜一筹?
本文深度对比Kettle与国产ETL工具FineDataLink,从开发效率、实时同步、运维管理等维度解析差异。Kettle开源灵活但学习成本高,FDL在实时处理、低代码开发、调度监控等方面优势明显,更适合企业级应用,助力高效数据集成与管理。