数据采集

首页 标签 数据采集
# 数据采集 #
关注
20595内容
121_训练评估:困惑度分析 - 分析指标与下游任务关系
在大规模语言模型(LLM)的训练过程中,评估模型性能是一个至关重要但常被简化处理的环节。2025年的研究表明,仅依赖单一指标(如困惑度)来判断模型质量已经无法满足复杂应用场景的需求。困惑度作为语言模型训练中最核心的评估指标,其与下游任务表现之间的关系远比直觉更复杂。本文将深入剖析困惑度的数学原理、计算方法、优化策略,以及其与各类下游任务表现的相关性分析,为大规模语言模型的训练优化提供全面的技术指导。
128_自我监督变体:SimCLR for Text - 推导对比学习的文本应用,代码实现无标注预训练的独特目标
在大型语言模型快速发展的今天,自我监督学习已成为训练高质量模型的核心技术。然而,传统的掩码语言建模(MLM)和因果语言建模(CLM)方法存在一些局限性,如计算效率低下和上下文利用不充分等问题。对比学习作为一种新兴的自我监督学习范式,通过学习相似性和差异性来提取数据的内在表示,为语言模型预训练提供了新的思路。
63_模型定制:领域微调技术
在2025年的AI生态系统中,通用大语言模型(LLM)如ChatGPT、LLaMA 3、Claude 3等已经展现出惊人的通用能力。然而,当面对特定行业或场景的专业需求时,通用模型往往表现出局限性:术语理解不准确、领域知识不足、任务适配性差等问题。这正是模型定制与微调技术应运而生的背景。
52_领域模型:BioBERT与FinBERT
在大语言模型(LLM)快速发展的今天,通用模型如GPT-4、Claude 3和Gemini虽然在广泛任务上表现出色,但在专业领域如医疗、金融和法律等场景中,往往难以达到专业人员的期待精度。2025年的研究表明,领域特定的预训练模型在垂直领域任务中能够显著超越通用模型,为专业应用提供更可靠的支持。本文将深入剖析BioBERT、FinBERT等代表性领域模型的技术原理、训练方法、性能评估及实际应用案例,探讨垂直领域预训练的独特优势与未来发展趋势。
56_大模型微调:全参数与参数高效方法对比
随着大型语言模型(LLM)规模的不断增长,从数百亿到数千亿参数,传统的全参数微调方法面临着计算资源消耗巨大、训练效率低下等挑战。2025年,大模型微调技术已经从早期的全参数微调发展到如今以LoRA、QLoRA为代表的参数高效微调方法,以及多种技术融合的复杂策略。本文将深入对比全参数微调和参数高效微调的技术原理、适用场景、性能表现和工程实践,为研究者和工程师提供全面的技术参考。
44_Falcon与Phi:高效开源模型
在大语言模型的发展历程中,长期存在一种主流观点:模型参数量越大,性能越好。然而,随着计算资源消耗和能源成本的持续攀升,这种"越大越好"的发展路径面临着严峻挑战。2025年,业界开始重新审视AI模型的发展方向,"效率"成为新的关键词。在这一背景下,阿联酋阿布扎比技术创新研究院(TII)的Falcon系列和微软的Phi系列模型以其"小而强"的特点脱颖而出,成为高效开源模型的典范。
25_T5的统一框架:文本到文本转换的创新范式
自然语言处理(NLP)领域长期面临的一个核心挑战是任务多样性。传统上,不同的NLP任务(如机器翻译、文本分类、问答系统等)往往需要设计特定的模型架构和损失函数。这种碎片化的方法不仅增加了研究和开发的复杂性,还限制了模型在不同任务间的知识迁移能力。
61_自定义基准:构建专属评测体系
在大型语言模型(LLM)快速发展的今天,通用基准测试如MMLU、C-Eval等已成为评估模型能力的重要工具。然而,随着LLM在各个行业的深度应用,通用基准往往无法准确反映模型在特定领域、特定任务上的真实表现。2025年,构建企业或组织专属的自定义评测基准已成为大模型落地应用的关键环节。
99_监督微调:Alpaca数据集格式与实现
在大语言模型(LLM)的开发和应用中,微调是将通用预训练模型转化为特定任务专家的关键步骤。监督微调(Supervised Fine-Tuning, SFT)作为微调的一种重要范式,通过人工标注的高质量数据集指导模型学习特定任务的输入输出模式,从而显著提升模型在目标任务上的性能。
100_RLHF(人类反馈强化学习)原理与实践
在大型语言模型(LLM)的发展历程中,我们见证了模型从简单的文本生成工具,逐渐演变为能够理解复杂指令、进行多轮对话、甚至展示创造性思维的智能系统。然而,这一进化并非仅仅依靠模型规模的增大和数据量的增加,更重要的是训练方法的创新。其中,人类反馈强化学习(Reinforcement Learning from Human Feedback, RLHF)作为一种革命性的训练范式,在2022年随着ChatGPT的问世而广受关注,并在随后的GPT-4、Claude、Gemini等先进模型中得到广泛应用。
免费试用