行业实践 | 基于Qwen2-VL实现医疗表单结构化输出
本项目针对不同医院检查报告单样式差异大、手机拍摄质量差等问题,传统OCR识别效果不佳的情况,探索并选定了Qwen2-vl系列视觉语言模型。通过微调和优化,模型在识别准确率上显著提升,能够精准识别并结构化输出报告单信息,支持整张报告单及特定项目的识别。系统采用FastAPI封装接口,Gradio构建展示界面,具备高效、灵活的应用特性。未来该方案可扩展至多种文本识别场景,助力行业数字化转型。
AI for Network Ops
网络运维工作涵盖从规划设计到日常维护的多个方面,随着网络规模扩大,人工运维难以应对。自动化运维系统应运而生,通过批量配置变更和监控工具提升效率。大模型(LLM)具备推理、学习和泛化能力,可作为网工的智能助手,优化故障定位等任务。团队通过多轮信息摘要和微调模型,实现了高效准确的故障定位,单个故障定位耗时小于1.5分钟,准确率超过80%。未来,大模型还将应用于智能答疑机器人和意图驱动网络等领域,全面提升网络运维效率。