2026:具身智能软件——开发者工具、范式与方向
具身智能的未来之战,本质上将是一场软件范式的竞争。正如早期PC和智能手机的革命最终由操作系统和应用生态所定义,具身智能的泛化能力和落地速度,也取决于其软件开发工具链和范式的革新。本报告将聚焦于加速这一转折的三大核心软件范式,深入剖析其技术内涵、主流工具,并为具身智能开发者构建一份面向2026年的前瞻性技能图谱。
SAPO去中心化训练:多节点协作让LLM训练效率提升94%
SAPO(Swarm Sampling Policy Optimization)提出去中心化异步强化学习框架,通过节点间共享rollouts提升大模型后训练效率。实验显示,在数千节点上可实现94%回报提升,尤其助力中等规模模型突破性能瓶颈。