SpringAI+DeepSeek大模型应用开发
本章介绍AI核心概念与大模型原理。AI历经三阶段发展,Transformer模型推动其飞跃。该模型基于注意力机制,可处理文本、图像、音频等数据,实现智能生成与推理。大语言模型(LLM)如GPT、DeepSeek均基于此,通过持续预测下一个词,逐字生成连贯内容,实现对话、创作等功能。
16 | 最近邻检索(下):如何用乘积量化实现「拍照识花」功能?
本文深入浅出地讲解了AI时代图片检索的核心技术:从特征提取、聚类算法(如K-Means)与局部敏感哈希的对比,到乘积量化压缩向量、结合倒排索引提升效率。重点剖析了如何通过聚类划分空间、用乘积量化大幅降低存储开销,并实现高效近似最近邻搜索。这些技术广泛应用于以图搜图、拍照识物、推荐系统等场景,是现代高维向量检索的基石。
Chap01. 认识AI
本文介绍AI核心概念与大模型开发原理,涵盖人工智能发展历程及Transformer神经网络的关键作用。详解其注意力机制如何提升信息处理智能,并解析大语言模型(LLM)如何通过持续生成实现连贯文本输出,帮助理解GPT等模型的工作机制。
20 | 推荐引擎:没有搜索词,「头条」怎么找到你感兴趣的文章?
本文深入解析了资讯类App推荐引擎的检索技术。通过“下拉刷新”背后的个性化召回机制,介绍了推荐系统如何在无搜索词情况下,基于用户行为数据构建用户与文章画像,并运用基于内容和协同过滤(用户/物品)的召回算法实现精准推荐,最后通过多路混合与分层排序优化性能。
12 | 非精准 Top K 检索:如何给检索结果的排序过程装上加速器?
本文介绍了非精准 Top K 检索的优化思路及三种实现方法:基于静态质量得分排序截断、胜者表利用词频打分、分层索引两阶段检索。核心思想是将复杂计算前置到离线阶段,在线时快速截断,降低打分开销。该方法广泛应用于搜索与推荐系统,通过召回+排序两阶段架构,在保证结果质量的前提下显著提升检索效率。
结束语
从数组链表到搜索引擎、推荐系统,信息技术不断演进。信息爆炸时代,唯有构建思维的“检索引擎”,筛选、提炼有价值的知识,才能不被洪流淹没。学会迭代认知,打好基础,步步为营,方能跟上时代,迈向更高台阶。(238字)