机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
70694内容
|
11小时前
|
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
|
14小时前
|
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
|
15小时前
| |
大模型攻防演武录·第五名的进击
本文深度解析2025阿里天池大模型攻防竞赛全国第五名的技术实战经验,涵盖从攻击绕过到终极防御的完整策略演进,揭示AI安全攻防背后的技术逻辑与认知边界。
|
21小时前
|
人体跌倒识别检测项目|全流程源码+数据集+可视化界面+一键训练部署
本项目基于 YOLOv8 模型和 PyQt5 图形界面工具,构建了一个 人体跌倒识别系统,旨在通过计算机视觉技术监测老年人等群体的跌倒行为。项目提供了完整的 源码、数据集、训练流程、以及开箱即用的检测程序,确保用户能够快速搭建并部署自己的跌倒识别系统。
|
21小时前
| |
来自: 物联网
MINUN: 微控制器上的精确机器学习推理——论文阅读
MINUN是一个专为微控制器设计的高效机器学习推理框架,能精确解决TinyML中的三大挑战:数字表示参数化、位宽分配优化和内存碎片管理。它支持如Arduino和STM32等低功耗设备,显著减少内存占用,同时保持模型精度。
|
1天前
| |
来自: 物联网
μNAS:面向微控制器的约束神经架构搜索——论文解读
μNAS是一种专为微控制器设计的神经架构搜索方法,旨在解决物联网设备中资源受限的挑战。通过多目标优化框架,μNAS能够在有限的内存和计算能力下,自动搜索出高效的神经网络结构。该方法结合了老化进化算法与贝叶斯优化,并引入结构化剪枝技术,实现模型压缩。实验表明,μNAS在多个数据集上均取得了优异的精度与资源使用平衡,显著优于现有方法,为边缘计算设备的智能化提供了可行路径。
|
1天前
| |
来自: 物联网
CMSIS-NN:ARM Cortex-M处理器的高效神经网络内核——论文解读
CMSIS-NN是专为ARM Cortex-M系列微控制器优化的神经网络计算内核库,旨在支持资源受限的物联网边缘设备进行高效的深度学习推理。该库通过对卷积、池化、全连接层等关键操作进行定点量化、SIMD指令优化和内存布局调整,显著提升了模型在嵌入式设备上的运行效率。实验表明,CMSIS-NN在Cortex-M7处理器上的推理速度比基准实现提升了近5倍,大幅降低了功耗,为边缘AI应用提供了可行的技术路径。
基于YOLOv8的恶性疟原虫自动识别与检测系统 | 源码+数据集
本项目集成了 YOLOv8目标检测模型 与 PyQt5图形化界面工具,实现对医学图像中 恶性疟原虫目标的快速识别。系统支持多种输入类型,运行便捷,并提供完整训练代码与部署教程,适合AI初学者与科研人员开箱即用、快速上手,助力医学图像智能化发展。
|
1天前
| |
来自: 物联网
TensorFlow Lite Micro:嵌入式TinyML系统上的机器学习推理框架——论文深度解析
TensorFlow Lite Micro(TFLM)是专为嵌入式系统设计的轻量级机器学习推理框架,适用于仅有几十KB内存的微控制器。它通过极简架构、模块化设计和内存优化策略,在资源受限设备上高效运行TinyML模型,广泛应用于关键词检测、传感器分析、预测性维护等领域。TFLM支持跨平台部署,并允许硬件厂商提供定制优化,兼顾灵活性与性能。
免费试用