机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
71284内容
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
拔俗AI信息化系统开发指南:从入门到实践
资深产品经理分享AI信息化系统开发全解析:从概念、背景到落地,用通俗语言讲清如何用AI升级传统系统。涵盖需求分析、架构设计、敏捷开发、测试部署及未来趋势,助力企业降本增效,把握数字化时代机遇。(238字)
拔俗AI助教系统:教师的"超级教学秘书",让每堂课都精准高效
备课到深夜、批改作业如山?阿里云原生AI助教系统,化身“超级教学秘书”,智能备课、实时学情分析、自动批改、精准辅导,为教师减负增效。让课堂从经验驱动转向数据驱动,每位学生都被看见,教育更有温度。
拔俗AI智能营运分析助手软件系统:企业决策的"数据军师",让经营从"拍脑袋"变"精准导航"
AI智能营运分析助手打破数据孤岛,实时整合ERP、CRM等系统数据,自动生成报表、智能预警与可视化决策建议,助力企业从“经验驱动”迈向“数据驱动”,提升决策效率,降低运营成本,精准把握市场先机。(238字)
拔俗AI家庭医生助手:用智能技术守护全家健康
AI家庭医生助手系统融合医疗大模型、知识图谱与多模态交互,打造7×24小时智能健康服务。以“辅助不替代”为原则,通过合规数据训练、精准医学对齐与动态知识推理,提供高效、可解释的个性化健康管理,打通医疗“最后一公里”,助力预防型医疗转型。(239字)
|
20天前
|
订单拆单合并处理接口设计与实现
本文介绍电商系统中订单拆单与合并接口的设计与实现,涵盖核心功能、RESTful API设计、Python伪代码示例及性能优化。通过规则驱动的拆分(如按仓库)和合并(如同地址聚合),提升配送效率,降低运营成本,适用于多仓储、高并发场景,助力开发者高效构建订单处理系统。(239字)
拔俗AI智能营运分析助手:用数据驱动企业高效决策
AI智能营运分析助手融合云原生架构、机器学习与自动化数据管道,打通多源数据集成、实时计算、智能预测与可视化分析全链路,将海量数据转化为精准决策洞察。支持对话式查询、客户分层、库存预测、异常预警等场景,助力企业降本增效。已广泛应用于零售、制造、电商等领域,推动营运智能化升级。(238字)
拔俗AI学伴智能体系统:基于大模型与智能体架构的下一代个性化学习引擎
AI学伴智能体系统融合大模型、多模态理解与自主决策,打造具备思考能力的个性化学习伙伴。通过动态推理、长期记忆、任务规划与教学逻辑优化,实现千人千面的自适应教育,助力因材施教落地,推动教育公平与效率双提升。(238字)
拔俗上海AI公司:用技术让智能真正“落地
在上海,AI软件定制正成为企业数字化转型新路径。通过场景化模型开发、模块化架构与数据闭环进化,实现技术与业务深度融合,助力企业降本增效,推动AI从概念走向实效落地。(238字)
免费试用