计算机视觉

首页 标签 计算机视觉
# 计算机视觉 #
关注
25502内容
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
24天前
|
ECCV2024 Oral:第一视角下的动作图像生成,Meta等提出LEGO模型
【10月更文挑战第25天】Meta公司提出了一种名为LEGO的新模型,旨在从第一视角生成动作图像,以促进技能传递。LEGO结合了视觉大型语言模型和扩散模型,通过微调和生成技术,实现了更准确的动作图像生成。该研究已在ECCV2024上被选为口头报告。
了解文档智能和知识挖掘
文档智能是 AI 的一个方面,用于管理、处理和使用在表单和文档中发现的大量各类数据。 借助文档智能,能够创建可自动处理合同、运行状况文档和财务表单等的软件
|
25天前
|
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
|
25天前
|
深度学习在图像识别中的革命性进展####
【10月更文挑战第24天】 本文探讨了深度学习如何彻底改变图像识别领域,从早期的挑战到最新的技术突破。通过回顾关键算法的发展历程、分析当前最前沿的应用实例,并展望其对未来社会的影响,本文旨在为读者提供一个全面而深入的理解框架。 ####
深度学习在图像识别中的革命性应用
本文探讨了深度学习技术在图像识别领域中的应用,重点分析了卷积神经网络(CNN)的工作原理及其对图像处理的影响。通过对比传统图像识别方法和深度学习方法,展示了深度学习如何显著提高了图像识别的准确率和效率。文章还简要介绍了一些著名的深度学习框架,如TensorFlow和PyTorch,并讨论了它们在实际应用中的优势。
|
25天前
|
一手训练,多手应用:国防科大提出灵巧手抓取策略迁移新方案
【10月更文挑战第24天】国防科技大学研究人员提出了一种新颖的机器人抓取方法,通过学习统一的策略模型,实现不同灵巧夹具之间的策略迁移。该方法分为两个阶段:与夹具无关的策略模型预测关键点位移,与夹具相关的适配模型将位移转换为关节调整。实验结果显示,该方法在抓取成功率、稳定性和速度方面显著优于基线方法。论文地址:https://arxiv.org/abs/2404.09150
免费试用