基于多模态感知的工业安全行为识别技术突破
本项目通过分层特征增强架构,突破工业安全监控中微小目标检测难、行为理解缺失和响应延迟高等技术瓶颈。采用动态ROI聚焦、时空域建模与联邦学习等创新技术,实现厘米级行为捕捉,准确率提升300%,隐患识别响应速度提高112倍,并已在危化、电力、医疗等行业落地应用,具备广阔推广前景。
端侧宠物识别+拍摄控制智能化:解决设备识别频次识别率双低问题
随着宠物成为家庭重要成员,其影像创作需求激增。传统相机“人脸优先”逻辑难以应对宠物拍摄的复杂场景,如毛发模糊、动态多变、光照反差大等。本文基于端侧AI与影像工程经验,系统梳理宠物识别驱动的对焦曝光重构技术,结合算法与产业实践,构建从检测到参数调度的完整解决方案,推动拍摄技术向“宠物优先”转型。
不慌
本项目实现视频按帧抽取图片、图片筛选复制、分类分发、模型训练与优化、文件管理及批量图像推理统计等功能,适用于目标检测任务的全流程处理。
AR眼镜在工业AI大模型识别的使用流程
AR眼镜融合AI大模型,实现工业场景智能识别与预警,提升制造质量与安全。通过多模态模型适配、开源模型选型、端云协同部署及定向训练,打造高精度工业AI识别系统,助力制造业智能化升级。
新时代
本项目实现视频处理与目标检测全流程,包括视频抽帧、图像筛选、数据集划分、模型训练及多种格式转换(ONNX/OpenVino),支持高效推理与自动标注,适用于视觉识别任务。