面向古籍版面数字化识别应用研究—基于HisDoc-DETR模型深入剖析
针对古籍版面复杂、文字稀疏、数据稀缺等难题,合合信息与华南理工大学联合提出HisDoc-DETR模型。该框架融合Transformer全局建模与CNN局部特征提取优势,创新引入语义关系学习、双流特征融合及GIoU感知预测头三大模块,显著提升古籍逻辑与物理结构的识别精度,在SCUT-CAB数据集上性能超越主流方法,为古籍数字化、知识库构建与文化遗产传播提供强有力的技术支撑。
YOLOv11浅浅解析:架构创新
YOLOv11是YOLO系列最新升级版,通过C3k2模块、SPPF优化和解耦检测头等创新,显著提升检测精度与速度,mAP提高2-5%,推理更快,支持多平台部署,适用于工业、安防、自动驾驶等场景。
香烟品牌识别和规格识别设计思路
基于YOLOv8实现香烟品牌与规格(条装/单盒装)识别,采用“品牌+规格”组合为60类的复合类别方案,结合充足标注数据(每类300-500张)、数据增强与反例优化,进行端到端联合训练,提升模型在复杂场景下的检测与分类精度。