MINUN: 微控制器上的精确机器学习推理——论文阅读
MINUN是一个专为微控制器设计的高效机器学习推理框架,能精确解决TinyML中的三大挑战:数字表示参数化、位宽分配优化和内存碎片管理。它支持如Arduino和STM32等低功耗设备,显著减少内存占用,同时保持模型精度。
256KB内存约束下的设备端训练:算法与系统协同设计——论文解读
MIT与MIT-IBM Watson AI Lab团队提出一种创新方法,在仅256KB SRAM和1MB Flash的微控制器上实现深度神经网络训练。该研究通过量化感知缩放(QAS)、稀疏层/张量更新及算子重排序等技术,将内存占用降至141KB,较传统框架减少2300倍,首次突破设备端训练的内存瓶颈,推动边缘智能发展。