人工智能平台PAI
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。
阿里云机器学习平台PAI论文入选国际顶会ASPLOS 2022
近日,阿里云机器学习PAI主导的论文《机器学习访存密集计算编译优化框架AStitch》入选国际顶会ASPLOS 2022,论文通过编译优化的手段来自动化地提高机器学习任务的执行效率。此次入选意味着阿里云机器学习平台PAI自研的深度学习编译优化系统达到了全球业界先进水平,获得了国际学者的认可,展现了中国机器学习系统技术创新在国际上的竞争力。
贾扬清领衔,阿里多人入选全球人工智能最具影响力学者榜单
近日,2022年度人工智能最具影响力学者榜单正式发布,在21个AI子领域中,阿里云计算平台负责人贾扬清等10名阿里科学家成功入选。其中,贾扬清在多媒体领域排名第一。
序列特征在推荐算法中的应用
行为序列特征在推荐,广告等领域中有着广泛应用,最近几年涌现了很多有关行为序列的研究论文,讲解如何将行为序列应用到实际场景中。但是论文中的实际思想距离落地还有一段距离,因此本文先介绍一些论文中的序列特征的用法,然后介绍一下在大规模分布式推荐系统框架 EasyRec 中如何将序列特征快速落地,提升实际场景效果。
浙江大学、达摩院、阿里云获中国电子学会科技进步一等奖
1月14日消息,中国电子学会公布“2021中国电子学会科学技术奖”名单,浙江大学、达摩院、阿里云完成的“超大规模高性能图神经网络计算平台及其应用”获得科技进步一等奖。
多任务学习模型之ESMM介绍与实现
本文介绍的是阿里巴巴团队发表在 SIGIR’2018 的论文《Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate》。文章基于 Multi-Task Learning (MTL) 的思路,提出一种名为ESMM的CVR预估模型,有效解决了真实场景中CVR预估面临的数据稀疏以及样本选择偏差这两个关键问题。后续还会陆续介绍MMoE,PLE,DBMTL等多任务学习模型。
预训练知识度量比赛夺冠!阿里云PAI发布知识预训练工具
阿里云计算平台PAI团队携手达摩院智能对话与服务技术团队,在CCIR Cup2021全国信息检索挑战杯的《预训练模型知识量度量》比赛中基于自研的融入知识预训练模型取得第一名。团队采用自研的知识预训练模型KGBERT和DKPLM为底座,采用多样化知识融入方法,形成强有力的蕴含丰富知识的预训练模型,在比赛数据上取得了非常好的效果。
量化感知训练实践:实现精度无损的模型压缩和推理加速
本文以近期流行的YOLOX[8]目标检测模型为例,介绍量化感知训练的原理流程,讨论如何实现精度无损的实践经验,并展示了量化后的模型能够做到精度不低于原始浮点模型,模型压缩4X、推理加速最高2.3X的优化效果。
持续探索行业新趋势,PAI平台获得联邦学习评测证书
2021 年 6 月 24 日,阿里云机器学习平台PAI获得“大数据产品能力评测”联邦学习项目基础能力专项评测证书,持续探索行业新趋势,不断在前沿的热门领域尝试AI应用落地。
机器学习PAI-DSW交互式建模个人版有奖评测活动
如果你是一名算法工程师或正在学习和转型,欢迎参加PAI-DSW交互式建模有奖评测,和我们一起建设AI模型构建最佳平台,期待听到你的悄悄话哦~
AICompiler动态shape编译框架
欢迎走进走进阿里云机器学习PAI AICompiler编译器系列。近期,阿里云机器学习PAI团队全新上线一套Dynamic Shape Compiler框架,不仅作为AICompiler技术栈中原有的Static Shape Compiler框架的重要补充,更是增加了Compiler在企业级数据处理应用的无限可能,在提升数据处理效率的同时,大幅提升AI工程化效率。
AICompiler编译器介绍及访存密集算子优化
欢迎走进阿里云机器学习PAI AICompiler编译器系列。随着AI模型结构的快速演化,底层计算硬件的层出不穷,用户使用习惯的推陈出新,单纯基于手工优化来解决AI模型的性能和效率问题越来越容易出现瓶颈。为了应对这些问题,AI编译优化技术已经成为一个获得广泛关注的技术方向。这两年来,这个领域也异常地活跃,包括老牌一些的TensorFlow XLA、TVM、Tensor Comprehension、Glow,以及最近呼声很高的MLIR,能够看到不同的公司、社区在这个领域进行着大量的探索和推进。
尼日利亚的学生开发者,用阿里云PAI打造了卡通头像神器
在国内外的各大社交平台上,卡通头像已经成为了一种风潮。但如何才能自己打造一款快速生成卡通化照片的神器呢?前不久,来自尼日利亚的学生开发者Abdul-Hadi Hashim就基于阿里云的多款产品开发出了这样一款名叫3D Animate Hub的小工具,并在首届阿里云全球AI创新挑战赛中获得了二等奖。
AI体验馆上线!集成业界领先NLP场景深度迁移学习框架EasyTransfer
2020年10月,阿里云正式开源了深度迁移学习框架EasyTransfer,这是业界首个面向NLP场景的深度迁移学习框架。 目前集合该能力的AI体验馆已正式上线,免费体验:https://workbench.data.aliyun.com/experience.htm#/paiAbilityVenue/
知乎李大海对话阿里云贾扬清:透视AI应用难题与未来趋势
“AI行业接下来可能有哪些发展?” “一线从业者如何看待其中的机会?”知乎合伙人、CTO李大海与阿里巴巴副总裁、阿里云智能高级研究员贾扬清亮相知乎直播,与网友分享了他们对AI时代下行业趋势、技术应用、个人成长等多个层面的洞察和思考。
阿里云PAI平台模型压缩技术落地淘宝直播双十一应用:一猜到底
随着移动端应用的兴起,模型压缩作为深度学习模型实现轻量化部署的有效手段,备受关注。机器学习也从理论研究阶段,有了明显的工程化、应用落地的趋势,那么模型压缩在淘宝直播游戏场景下,是如何发挥重要作用的呢,让我们一起揭开神秘的实践面纱。
如何自己训练一个热狗识别模型 | 《阿里云机器学习PAI-DSW入门指南》
本节教大家如何自己训练一个热狗识别模型,之后大家也可以拿这个模型测试一下自己身边长的像是热狗但是又不是热狗的东西,看看到底能得多少分~
半小时验证语音降噪—贾扬清邀你体验快捷云上开发 | 《阿里云机器学习PAI-DSW入门指南》
本文将实战讲解贾扬清在回答内部同学提出的业务问题时,给自己设的一个挑战:半小时内架构一个有体感的demo,达到语音降噪的效果。
大数据算命系列之用机器学习评估你的相亲战斗力 | 《阿里云机器学习PAI-DSW入门指南》
害,想知道你的相亲战斗力是多少吗?动手体验数据科学,成为PAI-DSW探索者~你想要知道的都在这里!
知乎李大海对话阿里云贾扬清:透视AI应用难题与未来趋势
“AI行业接下来可能有哪些发展?” “一线从业者如何看待其中的机会?”近日,知乎合伙人、CTO李大海与阿里巴巴副总裁、阿里云智能高级研究员贾扬清亮相知乎直播,与网友分享了他们对AI时代下行业趋势、技术应用、个人成长等多个层面的洞察和思考。
云端IDE:阿里云机器学习与PAI-DSW | 《阿里云机器学习PAI-DSW入门指南》
本节将带着大家掀开阿里云机器学习技术大图的一角,看看阿里云机器学习,特别是机器学习工程上的发展、沉淀和创新。
PAI:一站式云原生AI平台
本文是《飞天大数据产品价值解读系列》之《一站式云原生AI平台》的视频分享精华总结,主要由阿里云机器学习PAI团队的产品经理高慧玲(花名:玲汐)向大家介绍了阿里巴巴整体的AI情况以及一站式云原生的AI平台PAI,并且做了简单的DEMO演示。
体验机器学习PAI-DSW动手实验室,赢取价值20000大礼包及定制T恤衫
动手体验数据科学,成为PAI-DSW探索者!快来体验机器学习PAI-DSW动手实验室,测一测你的相亲战斗力指数,还能赢取价值20000大礼包及定制T恤衫!
基于PAI 10分钟搭建一个简单推荐系统
阿里巴巴技术专家傲海为大家带来基于PAI10分钟搭建一个简单推荐系统的介绍。内容包括个性化推荐业务流程,协同过滤算法,推荐方案的架构,以及实际操作四个部分。
推荐系统排序算法及架构说明
阿里巴巴技术专家傲海为大家带来推荐系统排序算法及架构说明的介绍。内容包括排序模块在推荐系统中的位置,排序算法的介绍,离线排序模型的训练架构,以及在线排序模型的训练架构。
推荐系统召回算法及架构说明
阿里巴巴技术专家傲海为大家带来推荐系统召回算法及架构说明的介绍。内容包括召回模块在推荐系统中的位置,召回算法的介绍,什么是协同过滤,以及向量召回架构的说明。
阿里巴巴飞天大数据平台机器学习PAI最新特性
本次分享主要围绕以下五个方面: • PAI产品简介 • 自定义算法上传 • 数加智能生态市场 • AutoML2.0自动调参 • AutoLearning自动学习
机器学习PAI 2020-3 月刊
PAI 2020-3月 产品月刊为您带来3月机器学习PAI产品:数据集管理及标注工具发布、自动特征探索算法发布、EAS资源组临时扩容功能上线及印度region支持DSW、PAI-TF组件等最新资讯。
原来GNN这么好上手,OMG!用它!
Graph-Learn(GL) 是阿里巴巴开源的高性能工业级大规模图学习系统,本文将对GL的用户接口做一个概览,并介绍GL丰富的图采样算法,以及GL灵活统一的GNNs模型框架,帮助用户快速上手GL。 项目地址:https://github.com/alibaba/graph-learn 。
阿里巴巴开源GNN框架Graph-Learn
项目地址:https://github.com/alibaba/graph-learn 阿里巴巴近期开源了面向图神经网络(GNN)的框架Graph-Learn(GL,原AliGraph)。框架由阿里内部团队研发,研发同学分别来自计算平台事业部-PAI团队,新零售智能引擎事业群-智能计算实验室,以及安全部-数据与算法团队。
打击黑灰产的利器 —— 图神经网络(GNN)
阿里巴巴安全部数据与算法团队一直致力于与黑灰产进行对抗,保障用户在淘宝、天猫、闲鱼等平台上的使用体验和切身利益。面对狡猾的黑灰产,我们研究出了一系列算法武器,图神经网络(GNN)是其中重要的防控技术。本文结合阿里开源GNN框架Graph-Learn(https://github.com/alibaba/graph-learn)进行介绍。
揭秘工业级大规模GNN图采样
互联网下的图数据纷繁复杂且规模庞大,如何将GNN应用于如此复杂的数据上呢?答案是图采样。结合阿里巴巴开源的GNN框架Graph-Learn(https://github.com/alibaba/graph-learn),本文重点介绍GNN训练过程中的各种图采样和负采样技术。
原来GNN这么好上手,OMG!用它!
GraphLearn(GL)是阿里巴巴开源的一个大规模图神经网络平台,本文将对GL的接口做基本介绍,帮助用户快速上手。项目地址:https://github.com/alibaba/graph-learn 。
推荐召回场景-FM Embedding实现方案
智能推荐分为排序和召回两大模块,在召回模块中通常会采用将 用户User和待推荐的 内容Item 分别以向量表示,然后通过User和Item的向量乘积大小作为User对Item的感兴趣程度的判断。本案例介绍如何基于真实的推荐场景数据,通过使用PAI平台提供的FM算法和Embedding提取算法产生User和Item的描述向量。
基于关系的违规团伙发掘风控方案
目前很多平台方都有团伙作案的情况发生,比如团伙性薅羊毛,比如团伙性的制造一些虚假信息,团伙性发送违法广告。之所以是团伙性作案,因为作案人员之间有某种关系连接。当业务方获取了人员关系之后,能否成功挖掘出违规团伙,关系到平台的安全。