开发者社区> 数据库> NoSQL数据库

NoSQL数据库

关注

阿里云NoSQL数据库提供了一种灵活的数据存储方式,可以支持各种数据模型,包括文档型、图型、列型和键值型。此外,它还提供了一种分布式的数据处理方式,可以支持高可用性和容灾备份。包含Redis社区版和Tair、多模数据库 Lindorm、MongoDB 版。

0
今日
1330
内容
15
活动
1717
关注
|
10月前
|
NoSQL 编译器 Linux
|

【赵渝强老师】Redis的安装与访问

本文基于Redis 6.2版本,详细介绍了在CentOS 7 64位虚拟机环境中部署Redis的步骤。内容包括安装GCC编译器、创建安装目录、解压安装包、编译安装、配置文件修改、启动服务及验证等操作。视频讲解和相关图片帮助理解每一步骤。

158 0
|
10月前
|
存储 NoSQL 网络协议
|

【赵渝强老师】MongoDB的安装与访问

本文介绍了在Linux系统上安装和部署MongoDB的详细步骤,包括安装依赖包、解压安装包、配置环境变量、创建数据目录及启动服务等。文中还提供了相关命令示例和注意事项,帮助用户顺利完成MongoDB的安装与配置。

256 0
|
10月前
|
存储 NoSQL 关系型数据库
|

【赵渝强老师】MongoDB的存储结构

MongoDB 是一个可移植的 NoSQL 数据库,支持跨平台运行。其逻辑存储结构包括数据库、集合和文档,而物理存储结构则由命名空间文件、数据文件和日志文件组成。视频讲解和示意图进一步解释了这些概念。

308 5
|
10月前
|
存储 缓存 NoSQL
|

【赵渝强老师】基于Redis的旁路缓存架构

本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。

186 4
|
10月前
|
缓存 NoSQL 数据库
|

运用云数据库 Tair 构建缓存为应用提速,完成任务得苹果音响、充电套装等好礼!

本活动将带大家了解云数据库 Tair(兼容 Redis),通过体验构建缓存以提速应用,完成任务,即可领取罗马仕安卓充电套装,限量1000个,先到先得。邀请好友共同参与活动,还可赢取苹果 HomePod mini、小米蓝牙耳机等精美好礼!

174 3
|
10月前
|
存储 NoSQL 关系型数据库
|

Redis的ZSet底层数据结构,ZSet类型全面解析

Redis的ZSet底层数据结构,ZSet类型全面解析;应用场景、底层结构、常用命令;压缩列表ZipList、跳表SkipList;B+树与跳表对比,MySQL为什么使用B+树;ZSet为什么用跳表,而不是B+树、红黑树、二叉树

1368 0
|
10月前
|
存储 NoSQL Redis
|

Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList

String类型底层数据结构,List类型全面解析,ZSet底层数据结构;简单动态字符串SDS、压缩列表ZipList、哈希表、跳表SkipList、整数数组IntSet

202 0
|
10月前
|
存储 消息中间件 NoSQL
|

Redis数据结构:List类型全面解析

Redis数据结构——List类型全面解析:存储多个有序的字符串,列表中每个字符串成为元素 Eelement,最多可以存储 2^32-1 个元素。可对列表两端插入(push)和弹出(pop)、获取指定范围的元素列表等,常见命令。 底层数据结构:3.2版本之前,底层采用**压缩链表ZipList**和**双向链表LinkedList**;3.2版本之后,底层数据结构为**快速链表QuickList** 列表是一种比较灵活的数据结构,可以充当栈、队列、阻塞队列,在实际开发中有很多应用场景。

798 5
|
11月前
|
JSON 分布式计算 前端开发
|

前端的全栈之路Meteor篇(七):轻量的NoSql分布式数据协议同步协议DDP深度剖析

本文深入探讨了DDP(Distributed Data Protocol)协议,这是一种在Meteor框架中广泛使用的发布/订阅协议,支持实时数据同步。文章详细介绍了DDP的主要特点、消息类型、协议流程及其在Meteor中的应用,包括实时数据同步、用户界面响应、分布式计算、多客户端协作和离线支持等。通过学习DDP,开发者可以构建响应迅速、适应性强的现代Web应用。

469 2
|
11月前
|
NoSQL 前端开发 MongoDB
|

前端的全栈之路Meteor篇(三):运行在浏览器端的NoSQL数据库副本-MiniMongo介绍及其前后端数据实时同步示例

MiniMongo 是 Meteor 框架中的客户端数据库组件,模拟了 MongoDB 的核心功能,允许前端开发者使用类似 MongoDB 的 API 进行数据操作。通过 Meteor 的数据同步机制,MiniMongo 与服务器端的 MongoDB 实现实时数据同步,确保数据一致性,支持发布/订阅模型和响应式数据源,适用于实时聊天、项目管理和协作工具等应用场景。

259 0
|
11月前
|
存储 前端开发 NoSQL
|

拿下奇怪的前端报错(四):1比特丢失导致的音视频播放时长无限增长-浅析http分片传输核心和一个坑点

在一个使用MongoDB GridFS存储文件的项目中,音频和视频文件在大部分设备上播放时长显示为无限,而单独播放则正常。经调查发现,问题源于HTTP Range请求的处理不当,导致最后一个字节未被正确返回。通过调整请求参数,使JavaScript/MongoDB的操作范围与HTTP Range一致,最终解决了这一问题。此案例强调了对HTTP协议深入理解及跨系统集成时注意细节的重要性。

244 0
|
11月前
|
JSON 搜索推荐 Go
|

ZincSearch搜索引擎中文文档及在Go语言中代码实现

ZincSearch官网及开发文档均为英文,对非英语用户不够友好。GoFly全栈开发社区将官方文档翻译成中文,并增加实战经验和代码,便于新手使用。本文档涵盖ZincSearch在Go语言中的实现,包括封装工具库、操作接口、统一组件调用及业务代码示例。官方文档https://zincsearch-docs.zinc.dev;中文文档https://doc.goflys.cn/docview?id=41。

384 0
|
11月前
|
开发框架 监控 搜索推荐
|

GoFly快速开发框架集成ZincSearch全文搜索引擎 - Elasticsearch轻量级替代为ZincSearch全文搜索引擎

本文介绍了在项目开发中使用ZincSearch作为全文搜索引擎的优势,包括其轻量级、易于安装和使用、资源占用低等特点,以及如何在GoFly快速开发框架中集成和使用ZincSearch,提供了详细的开发文档和实例代码,帮助开发者高效地实现搜索功能。

569 0
|
11月前
|
Cloud Native Java Shell
|

开发者如何使用云原生多模数据库 Lindorm

【10月更文挑战第3天】开发者如何使用云原生多模数据库 Lindorm

499 4
|
11月前
|
监控 NoSQL Redis
|

开发者如何使用阿里云Redis

【10月更文挑战第2天】开发者如何使用阿里云Redis

1559 0
|
11月前
|
监控 NoSQL 网络安全
|

开发者如何使用阿里云mongo

【10月更文挑战第1天】开发者如何使用阿里云mongo

432 0
|
NoSQL Java MongoDB
|

SpringBoot中MongoDB的那些骚操作用法

MongoDB作为一种NoSQL数据库,在不需要传统SQL数据库的表格结构的情况下,提供了灵活的数据存储方案。在Spring Boot中可以通过官方SDK、Spring JPA或MongoTemplate等方式集成MongoDB。文章重点介绍了Spring Data MongoDB提供的注解功能,例如`@Id`、`@Document`和`@Field`等,这些注解简化了Java对象到MongoDB文档的映射。此外,文中还讨论了MongoTemplate监听器的使用,包括设置主键值和日志记录等高级特性。

457 0
|
NoSQL 算法 Java
|

Redis Proxy RT上升后连接倾斜

本文细致地描述了关于Redis Proxy RT上升后连接倾斜问题的排查过程和根本原因,最后给出了优化方案。

315 10
|
canal 缓存 NoSQL
|

Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略

Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;先删除缓存还是先修改数据库,双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略

1747 6
|
NoSQL 数据库 Redis
|

数据库的行家里手在哪里?加入云大使计划,抽红包赢高额返佣!

成为阿里云云大使,推广Redis产品,享高至45%返佣!直至6月30日,邀新用户首购可抽618元红包,邀请新用户达标可获最高1万现金奖励,首购收入达标还有额外最高12万奖金。立即行动,奖金多多!

183 0
|
存储 SQL 多模数据库
|

多模数据库Lindorm再升级:对接Dataphin,打通数据治理“最后一公里”

Lindorm通过与Dataphin的深度整合,进一步解决了数据集成和数据治理的问题,为企业提供更加高效和更具性价比的方案。

15022 13
|
存储 缓存 NoSQL
|

Redis经典问题:BigKey问题

BigKey问题常困扰着Redis用户,其影响不容忽视。本文将深入探讨BigKey问题的本质及解决方案,帮助你优化Redis性能,提升系统稳定性。

754 2
|
缓存 NoSQL 安全
|

Redis经典问题:缓存击穿

本文探讨了高并发系统中Redis缓存击穿的问题及其解决方案。缓存击穿指大量请求同一未缓存数据,导致数据库压力过大。为解决此问题,可以采取以下策略:1) 热点数据永不过期,启动时加载并定期异步刷新;2) 写操作加互斥锁,保证并发安全并设置查询失败返回默认值;3) 预期热点数据直接加缓存,系统启动时加载并设定合理过期时间;4) 手动操作热点数据上下线,通过界面控制缓存刷新。这些方法能有效增强系统稳定性和响应速度。

958 0
|
机器学习/深度学习 缓存 监控
|

Redis经典问题:热点key问题

本文介绍了Redis中的热点key问题及其对系统稳定性的影响。作者提出了多种提前发现热点key的方法,包括历史数据分析、业务分析、实时监控、用户行为分析和机器学习预测。同时,文章列举了应对热点key的解决方案,如分布式存储、主从复制、前置缓存、定时刷新、限制逃逸流量和兜底逻辑。通过这些策略,可以有效管理和预防热点key带来的挑战,保证系统性能和可用性。

1655 5
|
NoSQL MongoDB 数据库
|

国内唯一 阿里云荣膺MongoDB“2024年度DBaaS认证合作伙伴奖”

阿里云连续第五年斩获MongoDB合作伙伴奖项,也是唯一获此殊荣的中国云厂商。一起学习MongoDB副本集的选举机制以及可能会出现的特殊情况。

89475 4
|
缓存 NoSQL Redis
|

Redis经典问题:数据并发竞争

在大流量系统中,数据并发竞争可能导致系统性能下降和崩溃。为解决此问题,可以采取加写回操作和互斥锁,确保数据一致性并减少写操作对缓存的影响。另外,保持缓存数据多个备份能降低并发竞争概率。通过实例展示了如何在电商网站中应用这些策略,从而提高系统稳定性和性能。关注微信公众号“软件求生”获取更多技术分享。

589 1
|
NoSQL Shell Redis
|

Redis热升级秘诀:保证高可用性的技术方案

Redis热升级方案允许在不中断业务的情况下,实现数千级别Redis的无缝更新。通过构建Redis Shell程序保存数据库状态,封装动态连接库,以及在运行时加载新版本库,保持客户端连接,该方法确保了业务连续性和高可用性,且升级仅需几毫秒,显著提升了系统效率。

893 6
|
缓存 监控 NoSQL
|

Redis经典问题:数据不一致

小米探讨了Redis数据不一致问题及其原因,包括缓存更新失败和rehash异常。提出了解决方案,如重试策略、缩短缓存时间、优化写入策略、监控报警、一致性验证、缓存分层和数据回滚机制。通过这些方法可提升应用的稳定性和性能。

879 2
|
关系型数据库 MySQL 数据库
|

mysqlTools 一分钟部署安装本mysql多个版本,解锁繁琐部署过程

mysqlTools 一分钟部署安装本mysql多个版本,解锁繁琐部署过程

516 2
|
消息中间件 缓存 NoSQL
|

Redis经典问题:缓存雪崩

本文介绍了Redis缓存雪崩问题及其解决方案。缓存雪崩是指大量缓存同一时间失效,导致请求涌入数据库,可能造成系统崩溃。解决方法包括:1) 使用Redis主从复制和哨兵机制提高高可用性;2) 结合本地ehcache缓存和Hystrix限流降级策略;3) 设置随机过期时间避免同一时刻大量缓存失效;4) 使用缓存标记策略,在标记失效时更新数据缓存;5) 实施多级缓存策略,如一级缓存失效时由二级缓存更新;6) 通过第三方插件如RocketMQ自动更新缓存。这些策略有助于保障系统的稳定运行。

1023 1
|
存储 缓存 监控
|

快速掌握Redis优化要点,告别性能瓶颈!

# Redis优化指南 了解如何提升Redis性能,从读写方式(整体与部分)、KV size、Key数量、读写峰值、命中率、过期策略、平均穿透加载时间、可运维性、安全性等方面着手。选择合适的读写策略,如只整体读写或部分读写变更,优化KV size避免过大或差异过大,合理管理Key数量,应对不同读写峰值,监控命中率并持续优化,设置智能过期策略,减少平均穿透加载时间,确保高可运维性并强化安全性。一起探索Redis的性能潜力!

2637 5
|
存储 Dragonfly NoSQL
|

Tair 对 Redis 引擎架构之争的看法

本文详细讲解了阿里云自研数据库Tair的发展以及介绍。

73833 1
|
监控 NoSQL 算法
|

探秘Redis分布式锁:实战与注意事项

本文介绍了Redis分区容错中的分布式锁概念,包括利用Watch实现乐观锁和使用setnx防止库存超卖。乐观锁通过Watch命令监控键值变化,在事务中执行修改,若键值被改变则事务失败。Java代码示例展示了具体实现。setnx命令用于库存操作,确保无超卖,通过设置锁并检查库存来更新。文章还讨论了分布式锁存在的问题,如客户端阻塞、时钟漂移和单点故障,并提出了RedLock算法来提高可靠性。Redisson作为生产环境的分布式锁实现,提供了可重入锁、读写锁等高级功能。最后,文章对比了Redis、Zookeeper和etcd的分布式锁特性。

847 16
|
存储 NoSQL 关系型数据库
|

【MongoDB系列笔记】MongoDB相关概念

MongoDB 是一个开源、高性能、无模式的文档型数据库,常用于处理高并发、海量数据的场景,尤其适合社交、游戏、物流、物联网和视频直播等领域。与传统的关系型数据库相比,MongoDB 更适合存储结构较为灵活、数据量大且事务性要求不高的数据。当面临高读写需求、大规模数据存储和高可扩展性需求时,可以选择 MongoDB。MongoDB 支持类似于 JSON 的 BSON 数据格式,具有丰富的数据模型,如文档、集合和数据库,以及强大的查询和索引功能。此外,MongoDB 提供复制集以实现高可用性和水平扩展性,以适应业务发展和数据增长。

277 0
|
存储 NoSQL 数据库
|

为什么要用 Tair 来服务低延时场景 - 从购物车升级说起

“购物车升级”是今年双十一期间提升用户体验的关键项目,展示了大淘宝技术团队致力于通过技术突破消费者和商家体验的天花板。低延迟是这些挑战中的核心,内存数据库Tair因其高吞吐、大连接数、热点请求处理、异常流量管理和复杂计算逻辑优化等特点,在低延迟场景下表现出色。Tair使用内存/SCM混合存储和各种索引来提供低延迟服务,并通过无锁并发、水平扩展分区等技术应对高并发。此外,Tair还通过热点策略、流控和执行流程优化等手段确保在大促时的稳定性和性能。Tair在双十一期间支持了购物车、销量统计、卖家优惠券召回和互动场景等多种业务,展现其低延迟和高并发的能力。

77320 11
|
缓存 监控 NoSQL
|

Redis经典问题:缓存穿透

本文介绍了缓存穿透问题在分布式系统和缓存应用中的严重性,当请求的数据在缓存和数据库都不存在时,可能导致数据库崩溃。为解决此问题,提出了五种策略:接口层增加校验、缓存空值、使用布隆过滤器、数据库查询优化和加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统稳定性的影响。

240 3
|
监控 NoSQL 算法
|

深入剖析Redis哨兵模式的原理和应用

Redis的哨兵模式是实现高可用性和自动故障转移的机制,当主服务器故障时,哨兵能自动检测并进行故障转移,确保服务连续和稳定性。哨兵模式通过监控主从服务器状态、自动故障转移、防止数据不一致,提高容错能力和负载均衡,降低运维成本,实现高可用性。哨兵通过检测主观下线和客观下线状态,以及选举Leader Sentinel来协调故障转移。Raft算法在其中用于领导者选举和状态一致性。哨兵模式通过综合考虑多种因素选举新主服务器并执行故障转移,保障集群稳定运行。

1259 0
|
存储 NoSQL Redis
|

【Redis系列笔记】Redis总结

Redis是一个基于内存的 key-value 结构数据库。 Redis 是互联网技术领域使用最为广泛的存储中间件。 Redis是用C语言开发的一个开源的高性能键值对(key-value)数据库,官方提供的数据是可以达到100000+的QPS(每秒内查询次数)。 它存储的value类型比较丰富,也被称为结构化的NoSql数据库。

229 0
|
NoSQL JavaScript Linux
|

【MongoDB系列相关笔记】单机部署

本文主要介绍了Windows和Linux系统中安装和启动MongoDB的步骤。

252 0
|
NoSQL API Redis
|

最佳实践|如何使用c++开发redis module

本文将试着总结Tair用c++开发redis module中遇到的一些问题并沉淀为最佳实践,希望对redis module的使用者和开发者带来一些帮助(部分最佳实践也适用于c和其他语言)。

76835 0
|
NoSQL Java 关系型数据库
|

【Redis系列笔记】分布式锁

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。 分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路

1162 2
|
缓存 NoSQL 算法
|

【Redis系列笔记】内存淘汰及过期删除

Redis是一个内存键值对数据库,所以对于内存的管理尤为重要。Redis内部对于内存的管理主要包含两个方向,过期删除策略和数据淘汰策略。内存淘汰策略指在Redis内存使用达到一定阈值的时候,执行某种策略释放内存空间,以便于接收新的数据。数据过期删除策略是指在数据的有效时间到期后,如何从内存中删除这些数据的规则。

285 0
|
NoSQL Redis
|

透视Redis集群:心跳检测如何维护高可用性

Redis心跳检测保障集群可靠性,通过PING命令检测主从连接状态,预防数据丢失。当连接异常时,自动触发主从切换。此外,心跳检测辅助实现`min-slaves-to-write`和`min-slaves-max-lag`策略,避免不安全写操作。还有重传机制,确保命令无丢失,维持数据一致性。合理配置心跳检测,能有效防止数据问题,提升Redis集群的高可用性。关注“软件求生”获取更多Redis知识!

745 10
|
存储 负载均衡 NoSQL
|

【Redis系列笔记】Redis集群

集群是一种在多个计算机或服务器之间分配和管理任务的方式。它们被广泛应用于大型计算任务、数据处理、网络服务和高性能计算等领域。在Redis中,主要有以下三种集群,分别是主从集群,哨兵集群,分片集群。

372 18
|
监控 NoSQL 算法
|

Redis集群模式:高可用性与性能的完美结合!

小米探讨Redis集群模式,通过一致性哈希分散负载,主从节点确保高可用性。节点间健康检测、主备切换、数据复制与同步、分区策略和Majority选举机制保证服务可靠性。适合高可用性及性能需求场景,哨兵模式则适用于简单需求。一起学习技术的乐趣!关注小米微信公众号“软件求生”获取更多内容。

509 11
|
缓存 NoSQL 数据库
|

探秘Redis读写策略:CacheAside、读写穿透、异步写入

本文介绍了 Redis 的三种高可用性读写模式:CacheAside、Read/Write Through 和 Write Behind Caching。CacheAside 简单易用,但可能引发数据不一致;Read/Write Through 保证数据一致性,但性能可能受限于数据库;Write Behind Caching 提高写入性能,但有数据丢失风险。开发者应根据业务需求选择合适模式。

1769 2
|
缓存 NoSQL Java
|

【Redis系列笔记】Redis事务

Redis事务的本质是一组命令的集合。事务支持一次执行多个命令,一个事务中所有命令都会被序列化。在事务执行过程,会按照顺序串行化执行队列中的命令,其他客户端提交的命令请求不会插入到事务执行命令序列中。

249 3
|
存储 缓存 NoSQL
|

Redis多级缓存指南:从前端到后端全方位优化!

本文探讨了现代互联网应用中,多级缓存的重要性,特别是Redis在缓存中间件的角色。多级缓存能提升数据访问速度、系统稳定性和可扩展性,减少数据库压力,并允许灵活的缓存策略。浏览器本地内存缓存和磁盘缓存分别优化了短期数据和静态资源的存储,而服务端本地内存缓存和网络内存缓存(如Redis)则提供了高速访问和分布式系统的解决方案。服务器本地磁盘缓存因I/O性能瓶颈和复杂管理而不推荐用于缓存,强调了内存和网络缓存的优越性。

1229 47
|
缓存 NoSQL Redis
|

揭秘Redis的高效失效策略,提升可用性

Redis是广泛使用的开源内存数据库,其高性能和多样性使其在现代应用中不可或缺。然而,内存限制和数据管理是关键挑战。本文探讨了Redis的失效策略,包括内存淘汰(如LRU和LFU)和缓存失效策略(定时清除、惰性清除和定时扫描清除),以应对内存耗尽、数据过期等问题,确保系统性能和稳定性。通过合理配置这些策略,可以优化内存使用,防止数据不一致,提升系统效率。

514 0
我要发布