开源大数据平台 E-MapReduce
阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/D18F85690F1C4FFE9B8864E3F0B5AD56-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
阿里云EMR 2.0线上发布会
云原生趋势下,开源大数据处于重构之中,以 Hadoop 为核心的开源大数据体系,从 2015 年开始转变为多元化技术并行发展。阿里云EMR作为开源大数据领域的引领者,迎来重磅升级,从平台体验、数据开发、服务形态、分析场景实现全面创新。通过云原生能力重构平台层、数据层、计算层,满足数千客户流处理、数据可视化、交互式分析、数据湖等多场景需求,为客户构建新一代开源大数据基础设施!讲师/嘉宾简介荆杭-阿里云高级产品专家,EMR产品负责人绝顶-阿里云资深技术专家,EMR平台技术团队负责人无谓-阿里云资深技术专家,数据湖构建与分析负责人铁杰 - 阿里云高级技术专家,数据湖存储负责人辰繁 - 阿里云高级技术专家,开源大数据OLAP&生态负责人
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/D742B40BB8554CAD86C4E8BB92302188-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Lakehouse Meetup “Apache Pulsar 的湖仓一体方案:Pulsar 的 Lakehouse 分层存储集成详解”
Lakehouse Meetup “Apache Pulsar 的湖仓一体方案:Pulsar 的 Lakehouse 分层存储集成详解”陈航StreamNative 高级工程师Apache Pulsar PMC member
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/94B583C7825346BEA49F6653535C478E-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
使用Databricks和MLflow进行机器学习模型训练和部署的应用实践【Databricks 数据洞察公开课】
本期课介绍如何使用DDI和MLflow搭建机器学习生命周期管理平台,实现从数据准备、模型训练、参数和性能指标追踪、以及模型部署的全流程。讲师/嘉宾简介李锦桂--阿里云开源大数据平台开发工程师
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/BFCAF880DAC64C8AA6386F25708BE503-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Delta Lake数据湖基础介绍(开源版)【Databricks 数据洞察公开课】
公开课第四讲:本期公开课针对社区版本Delta Lake提供的几大核心特性进行讲解,并通过示例演示如何使用这些特性。产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群下期预告《Delta Lake数据湖基础介绍(商业版)》讲师/嘉宾简介筱龙阿里云开源大数据平台技术专家
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/A826CB0B8A994015942C11A3BB20BB85-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
阿里云EMR系列直播-EMR spark on ACK产品演示及最佳实践
EMR on ACK是企业级半托管的开源大数据平台,为阿里云E-MapReduce(EMR)提供了一个部署选项,允许您在阿里云容器服务Kubernetes版 (ACK) 上运行开源大数据框架。 目前支持Spark引擎的部署,结合自研的Remote shuffle service服务组件,提供用户高稳定、高性价比、灵活的弹性计算服务。本次直播重点展开了该产品介绍和使用演示。讲师介绍石磊(砳岩),阿里云技术专家
![](https://yqfile.alicdn.com/c017b9e6fb02720fd17464718f299e428fbbbb60.png?x-oss-process=image/resize,h_160,m_lfit)
云上大数据的存储方案设计和选择
上云拐点已来,开源大数据上云是业界共识。如何满足在云上低成本存储海量数据的同时又实现高效率弹性计算的潜在需求?放眼业界,都有哪些成熟存储方案和选择?各自适用的存储和计算场景是什么?背后的技术关键和考虑因素都有哪些?欢迎大数据技术爱好者面对面交流和探讨!嘉宾介绍姚舜扬,花名辰山,阿里巴巴计算平台事业部 EMR 高级开发工程师,目前从事大数据存储方面的开发和优化工作;苏昆辉,花名抚月,阿里巴巴计算平台事业部 EMR 高级工程师, 曾就职于华为、网易. Apache HDFS committer. 对Hadoop、HBase等有深入研究, 对分布式存储、高性能优化有丰富经验. 目前从事大数据云化相关工作.
![](https://vod-yq.aliyun.com/vod-7651a3/image/default/20D76EBFEED847DC879BF5A1BCF3FEA4-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
用Analytics-Zoo实现基于深度学习的胸腔疾病AI诊疗辅助
讲师介绍龚奇源博士,英特尔机器学习专家。从事多年数据隐私和机器学习研究,2017年加入英特尔,目前负责Analytics-Zoo中ClusterServing、Streaming、OpenVINO和推理优化等工作。直播简介:本次分享主要介绍如何利用Analytics Zoo和NIH胸部X光影像数据集,在Apache Spark集群上实现基于深度学习的胸腔疾病分类,为医生提供端到端的胸腔疾病AI诊疗辅助。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo
![](https://yqfile.alicdn.com/1c9f8f8142568767b31313262e93ce5cb07b3254.png?x-oss-process=image/resize,h_160,m_lfit)
关于 JindoFS 最新的 OTS 方案
本次直播主要介绍JindoFS的元数据的后端演化。包括JindoFS的架构以及使用场景、JindoFS 元数据的不同的后端支持,以及JindoFS 在云上环境如何支持 OTS 作为元数据后端。讲师介绍殳鑫鑫,花名辰石,阿里巴巴计算平台事业部EMR团队技术专家,目前从事大数据存储以及Spark相关方面的工作。
![](https://yqfile.alicdn.com/c017b9e6fb02720fd17464718f299e428fbbbb60.png?x-oss-process=image/resize,h_160,m_lfit)
【EMR打造高效云原生数据分析引擎】
EMR-Jindo 是 EMR 推出的云原生 OLAP 引擎。凭借该引擎,EMR 成为第一个云上 TPC-DS 成绩提交者。经过持续不断地内核优化,目前基于最新 EMR-Jindo 引擎的 TPC-DS 成绩又有了大幅提高,达到了3615071,成本降低到 0.76 CNY。本次分享将介绍 EMR-Jindo 引擎背后的相关技术以及以 EMR-Jindo 为核心的云上大数据架构方案。主讲人辛现银(辛庸),阿里巴巴计算平台事业部 EMR 技术专家。Apache Hadoop,Apache Spark contributor。对 Hadoop、Spark、Hive、Druid 等大数据组件有深入研究。目前从事大数据云化相关工作,专注于计算引擎、存储结构、数据库事务等内容。
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/1361899CD4CB4F23AAF7CF2F1026E7DB-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
EMR StarRocks OLAP 数据分析场景
EMR StarRocks 线上公开课 第3期直播亮点EMR Serverless StarRocks 极速分析存算分离架构升级Trino兼容,无缝替换讲师/嘉宾简介周康(榆舟)阿里云高级技术专家开源大数据OLAP引擎团队负责人StarRocks TSC Member
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/735703504BBB4F1D8C6670A029ECA154-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Lakehouse Meetup“Apache Hudi 实时湖仓解决方案
Lakehouse Meetup“Apache Hudi 实时湖仓解决方案”陈玉兆阿里巴巴技术专家Apache Hudi PMCApache Calcite PMC
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/0B3F4CEC5EA74AE6A1255FCAEAAC23EE-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
数据湖JindoFS+OSS 实操干货36讲 第三课(5/6讲)
【第5/6讲直播主题】1、访问 OSS 这类对象存储最快的方式:JindoFS SDK2、Hadoop/Spark 访问 OSS 加速【背景】为了让更多开发者了解并使用 JindoFS,由阿里云 JindoFS+OSS 团队打造的专业公开课【数据湖 JindoFS+OSS 实操干货36讲】会在每周二16:00准时开讲!从五大板块入手,玩转数据湖!【讲师】诚历 - 阿里巴巴计算平台事业部 EMR 技术专家流影 - 阿里巴巴计算平台事业部 EMR 技术专家
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/16166811D7C5421291DFEF12FA2D0046-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
第三节课:EMR 的存储解决方案
本节主要介绍EMR针对云上大数据的存储解决方案,如何为计算提供灵活高效的存储基础讲师:姚舜扬,花名辰山,阿里巴巴计算平台事业部 EMR 高级开发工程师,目前从事大数据存储方面的开发和优化工作
![](https://vod-yq.aliyun.com/vod-7651a3/image/default/91A519F06FBA41B6BF54B45F676DB6A9-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
OAP Spark 优化介绍: 通过索引和缓存优化交互式查询性能
讲师介绍:陈海锋,英特尔亚太研发有限公司大数据部门的高级软件架构师,开发经理,主要研究和关注基于Hadoop和Spark的大数据框架的分析和优化,Apache社区的长期贡献者。沈祥翔,英特尔亚太研发有限公司大数据部门的高级软件工程师,主要担任OAP项目的开发。分享介绍:简单介绍OAP的总体蓝图。同时详细介绍其中的一个具体优化,使用索引和缓存来解决交互式查询性能挑战。英特尔和社区合作,为Spark SQL实现了索引和数据源缓存,通过为关键查询列创建并存储完整的B +树索引,并使用智能的细粒度数据缓存策略,我们可以极大的提升基于Spark SQL的交互式查询的性能。
![](https://vod-yq.aliyun.com/vod-7651a3/image/default/CF65EA32C6F949BE8D29CB02DA414E0C-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
存储计算分离场景的计算适应优化
讲师介绍王道远,花名健身,阿里云EMR技术专家,Apache Spark活跃贡献者,主要关注大数据计算优化相关工作。直播简介:本次分享会介绍云上大数据处理的存储计算分离特征,分析传统大数据处理中数据本地化与存储计算分离场景的区别,以及在存储计算分离场景中阿里云EMR的相关优化。
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/A1723F17443244658AC0574C4B16B65F-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
洞悉 Spark 任务调度新能力|Apache Spark + DolphinScheduler Meetup
洞悉 Spark 任务调度新能力|Apache Spark + DolphinScheduler Meetup特邀 - 阿里云 EMR 数据开发平台团队负责人孙一凡、BIGO 大数据研发工程师许名勇、阿里云 EMR Spark 引擎负责人周克勇 ,通过他们的分享让用户能更快更好更便捷的使用 Apahce Spark + Apahce DolphinScheduler 。讲师/嘉宾简介孙一凡(Evans 忆梵) 阿里云 EMR 数据开发平台团队负责人周克勇(一锤) 阿里云 EMR Spark 引擎负责人许名勇 BIGO 大数据研发工程师
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/9C6201C61D8042EA9F9513FC9A6A1AF4-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
如何使用Delta Lake构建批流一体数据仓库【Databricks 数据洞察公开课】
从场景痛点、实践操作介绍如何使用Delta Lake同时处理批作业和流作业,快速搭建批流一体数据仓库。讲师/嘉宾简介讲师:佳亮,阿里云开源大数据平台技术工程师
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/2FE31E2CFBD04643A9F06916DC77E6DC-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Delta Lake数据湖基础介绍(商业版)【Databricks 数据洞察公开课】
公开课第五讲:介绍 Lakehouse 搜索引擎的设计思想,探讨其如何使用缓存,辅助数据结构,存储格式,动态文件剪枝,以及 vectorized execution 达到优越的处理性能。加入技术交流群下期预告《如何快速搭建流批一体数据仓库》讲师/嘉宾简介:李洁杏 Databricks 资深软件工程师
![](https://vod-yq.aliyun.com/vod-7651a3/image/default/905CEB511759467598A00A43A37E450B-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Hadoop 小文件/冷文件分析
庞大的小文件和冷文件数量会对HDFS的性能产生不利影响,严重时甚至影响业务稳定性,这个主题将介绍对大容量HDFS进行小文件和冷文件分析的方法,并基于分析结果可以采取哪些处理措施。讲师:郭聪,花名析源,阿里云计算平台事业部技术专家。目前主要从事大数据领域APM产品的研发工作。
![](https://vod-yq.aliyun.com/vod-7651a3/image/default/7458B781DCFA424A8E705C419A406A39-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Analytics Zoo上的分布式TensorFlow训练AI玩FIFA足球游戏
近年来,由于对通用人工智能研究的潜在价值,训练AI玩游戏一直是一个火热的研究领域。FIFA实时视频游戏场景复杂,需要结合图像,强化学习等多种不同的AI技术,同时也要求agents响应有实时性,因此是一个非常好的试验场,可以用来探索不同类型的AI技术。本次分享主要介绍我们在训练AI玩FIFA视频游戏方面的一些工作。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo讲师介绍:喻杉,Intel大数据分析团队机器学习工程师。她目前专注于在analytics-zoo大数据和人工智能平台上开发针对时间序列分析的自动机器学习组件。在加入intel前,她在浙江大学获得了学士和硕士学位。
![](https://vod-yq.aliyun.com/vod-7651a3/image/default/95CDC3AD571A41A88D10E602402B31D7-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
JindoFS Fuse 支持
本次直播主要介绍如何利用FUSE的POSIX文件系统接口,像本地磁盘一样轻松使用大数据存储系统, 为云上AI场景提供了高效的数据访问手段。讲师介绍苏昆辉,花名抚月,阿里巴巴计算平台事业部 EMR 高级工程师, Apache HDFS committer. 目前从事开源大数据存储和优化方面的工作。
![](https://yqfile.alicdn.com/a467a452a5d67df09d5cf91945906b05210fcdd4.png?x-oss-process=image/resize,h_160,m_lfit)
Hadoop Job committer 的演化和发展
Job Committer是Mapreduce/Spark等分布式计算框架的重要组成部分,为分布式任务的写入提供一致性的保证,本次分享主要介绍Job Committer的演进历史,以及社区和EMR在S3/OSS等云存储上的最新进展。讲师介绍李呈祥,花名司麟 ,阿里云智能EMR团队高级技术专家,Apache Hive Committer, Apache Flink Committer,目前主要专注于EMR产品中开源计算引擎的优化工作。
![](https://yqfile.alicdn.com/c017b9e6fb02720fd17464718f299e428fbbbb60.png?x-oss-process=image/resize,h_160,m_lfit)
基于 Spark 打造高效云原生数据分析引擎
由阿里巴巴 EMR 团队提交的 TPC-DS 成绩在九月份的榜单中取得了排名第一的成绩。这个成绩背后离不开 EMR 团队对 Spark 执行引擎持续不断的优化。本次分享将选取一些有代表性的优化点,深入到技术细节做详细介绍,包括但不限于动态过滤、CBO增强、TopK排序等等。嘉宾介绍辛庸,阿里巴巴计算平台事业部 EMR 技术专家。Apache Hadoop,Apache Spark contributor。对 Hadoop、Spark、Hive、Druid 等大数据组件有深入研究。目前从事大数据云化相关工作,专注于计算引擎、存储结构、数据库事务等内容。
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/6E223055A1304A7CB60526DF3FD55FA2-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
EMR StarRocks 3.0:极速统一湖仓新范式平台
EMR StarRocks 线上公开课 第1期直播亮点统一极速湖仓架构的技术思考Serverless StarRocks 亮点及技术优势Serverless StarRocks 已落地案例分享Serverless StarRocks 持续演进与规划讲师简介弘锐 - 阿里云 E-MapReduce 产品专家
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/D18B65DE659543229FC333CFC886E0CB-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Apache Kyuubi & Celeborn,助力 Spark 拥抱云原生
10月14日14:00-17:30,Apache Kyuubi & Celeborn 社区将在杭州举办「Apache Kyuubi & Celeborn (Incubating) 助力 Spark 拥抱云原生」Meetup,本次 Meetup 邀请到阿里云、网易数帆、Cisco、丁香园、Shopee 等技术大咖深入探讨交流基于 Apache Kyuubi & Celeborn 的技术实践,助力 Spark 拥抱云原生!讲师/嘉宾简介周克勇(一锤):阿里云 EMR Spark 引擎负责人,Apache Celeborn (Incubating) 的发起人潘成:网易数帆大数据技术专家,Apache Kyuubi PMC Member,Apache Celeborn (Incubating) PPMC Member朱夷(AngersZhuuuu):Shopee 技术专家, Spark PIC。 Apache Celeborn(Incubating) PPMC/Apache Spark active Contributor/ Apache HDFS/YARN contributorHe Zhao:Data Engineer at CiscoPengqi Li:Data Engineer at Cisco陈福:Apache Kyuubi PMC Member / Apache Celeborn (Incubating) Committer / 丁香园大数据基础平台负责人
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/97800C6C6E66433FB7AB585D07E3FD4C-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
云上StarRocks,极速湖仓meetup - 北京站
来自水滴筹、猿辅导、阿里云 EMR 团队和 StarRocks 社区的技术专家,针对开源 OLAP 技术架构、 StarRocks 产品硬核技术及 EMR StarRocks 进行分享。EMR Serverless StarRocks 免费公测讲师/嘉宾简介水滴筹、猿辅导、阿里云 EMR 团队和 StarRocks 社区的技术专家
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/BEC61A3B56A94041952D3CCE5D38D963-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Lakehouse Meetup “整合Pulsar和Lakehouse数据:使用Connector将Pulsar Topic中的数据Sink到Lakehouse storage”
Lakehouse Meetup “整合Pulsar和Lakehouse数据:使用Connector将Pulsar Topic中的数据Sink到Lakehouse storage”张勇 StreamNative 高级工程师Apache Pulsar Committer
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/6CB231FF293E42B7B9E2A460E534A6E3-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
深度解析数据湖存储方案Lakehouse架构【Databricks 数据洞察公开课】
从数据仓库、数据湖的优劣势,湖仓一体架构的应用和优势等多方面深度解析Lakehouse架构。讲师/嘉宾简介Databricks软件工程师 张泊产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/D227ED9D3A0C44F0866E1BCC1A31A477-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
阿里云EMR系列直播 - 精讲 Databricks数据洞察(介绍及案例分析)
Databricks数据洞察是企业级全托管的Spark高性能大数据分析平台,来自Apache Spark创始公司Databricks。引擎采用Databricks Runtime,性能与社区版相比,最高可达50倍提升,高效而稳定。本次直播将重点展开介绍该产品,并针对代表性案例进行分析。讲师介绍韩宗泽(棕泽),阿里云技术专家,计算平台事业部开放平台-生态企业团队负责人
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/B0C5FB5418274D64B7DE14B19B489C49-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
数据湖JindoFS+OSS 实操干货36讲 第二课
【第二课直播主题】1、如何将 HDFS 数据归档到 OSS2、如何将 Hive 数据按分区归档到 OSS【背景】为了让更多开发者了解并使用 JindoFS,由阿里云 JindoFS+OSS 团队打造的专业公开课【数据湖 JindoFS+OSS 实操干货36讲】会在每周二16:00准时开讲!从五大板块入手,玩转数据湖!讲师介绍辰石 - 阿里巴巴计算平台事业部 EMR 技术专家健身 - 阿里巴巴计算平台事业部 EMR 技术专家
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/4DDDAC845D7C4FD4A63D9815D519DA7D-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Spark Shuffle RPMem扩展: 借助持久内存与RDMA加速Spark 数据分析
Spark Shuffle RPMem扩展提供了一个基于PMem 和RDMA 来加速Shuffle的方案,它采用PMem 作为Shuffle的存储介质,利用PMDK 用户态编程库进行数据读写,减小用户态、内核态切换与文件系统开销;用基于RDMA网络协议异构的传输层实现高性能数据传输;还将RDMA直接注册在PMem上,减少内存拷贝。本次直播介绍如何利用持久化内存与高性能RDMA 网络来加速Spark Shuffle。讲师介绍:张建,英特尔亚太研发有限公司大数据部门的软件工程经理,专注于大数据和机器学习中存储方案优化
![](https://vod-yq.aliyun.com/vod-7651a3/image/default/3C34AC595D874F64B2199D7FBB3B4E4C-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
TFPark: Distributed TensorFlow in Production on Apache Spark
TFPark是开源AI平台Analytics Zoo中一个模块,它的可以很方便让用户在Spark集群中分布式地进行TensorFlow模型的训练和推断。一方面,TFPark利用Spark将TensorFlow 定义的AI训练或推理任务无缝的嵌入到用户的大数据流水线中,而无需对现有集群做任何修改;另一方面TFPark屏蔽了复杂的分布式系统逻辑,可以将单机开发的AI应用轻松扩展到几十甚至上百节点上。本次分享将介绍TFPark的使用,内部实现以及在生产环境中的实际案例。 讲师简介: 汪洋,英特尔大数据团队的机器学习工程师,专注于分布式机器学习框架和应用。他是Analytics Zoo和BigDL的核心贡献者之一。
![](https://vod-yq.aliyun.com/vod-7651a3/image/default/F4F7F50FC28443619FFC36651BD339B6-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
半小时,将你的Spark SQL模型变为在线服务
SparkSQL在机器学习场景中应用模型从批量到实时面临的问题 - SparkSQL 转换成实时执行成本高 - 离线特征和在线特征保持一致困难 - 离线效果与在线效果差距大我们是如何解决这些问题 相对传统实现方式我们优势 SparkSQL实时上线demo讲师:王太泽 第四范式特征工程数据库负责人 曾在百度担任资深研发工程师 一直致力于解决机器学习模型从离线到在线特征一致性问题和性能问题。
![](https://yqfile.alicdn.com/22995c8f0755d1f284209add1551992240085add.png?x-oss-process=image/resize,h_160,m_lfit)
Office Depot利用Analytics Zoo构建智能推荐系统的实践分享
大量实验结果表明深度学习能更好地帮助商家为用户个性化推荐感兴趣的商品。Office Depot将Analytics Zoo工具包引入到他们的推荐系统中,在Spark集群上分布式训练了各种推荐算法模型,实验结果相比于传统的推荐算法有了十分显著的提升,本次分享主要介绍Office Depot使用Analytics Zoo构建智能推荐系统的实践经验。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo讲师介绍讲师:黄凯Intel数据分析团队软件工程师。负责开发基于Apache Spark的深度学习框架,同时支持企业客户在大数据平台上构建端到端的深度学习应用。他是Analytics Zoo和BigDL的核心贡献者之一。
![](https://yqfile.alicdn.com/e4fc2f10a00488553be7228251f1641d368820c2.png?x-oss-process=image/resize,h_160,m_lfit)
Tablestore结合Spark的云上流批一体大数据架构
传统Lambda架构组件多运维复杂,如何使用一套存储和一套计算来实现流批架构充分享受技术红利?以Delta Lake为代表的新型数据湖方案越来越流行,传统的Lambda架构如何向数据湖架构进行扩展?以及结构化数据结合Delta Lake的最佳解决方案是什么。本次分享将会结合理论讲解和实际场景为您一一解答。讲师介绍王卓然, 花名琸然 阿里云存储服务技术专家
![](https://yqfile.alicdn.com/c017b9e6fb02720fd17464718f299e428fbbbb60.png?x-oss-process=image/resize,h_160,m_lfit)
【基于Spark与TensorFlow的机器学习实践】
Apache Spark是目前最火热的计算框架,而TensorFlow是目前最火热的机器学习框架,当他们2个碰撞到一起的时候,也会产生巨大的能量。本议题会介绍EMR和PAI在这个上面的实践。主讲人吴威(无谓), 阿里巴巴高级技术专家,2008年加入阿里巴巴集团,先后在B2B和阿里云工作,一直从事大数据和分布式计算相关研究,作为主要开发和运维人员经历了阿里内部大数据集群的上线和发展壮大,现在阿里云EMR团队,负责Spark、Hadoop等计算引擎研发。江宇,阿里云EMR技术专家。从事Hadoop内核开发,目前专注于机器学习、深度学习大数据平台的建设
![](https://yqfile.alicdn.com/c017b9e6fb02720fd17464718f299e428fbbbb60.png?x-oss-process=image/resize,h_160,m_lfit)
【New Developments in the Open Source Ecosystem: Apache Spark 3.0 and Koalas】
Apache Spark 3.0 and Koalas的最新进展主讲人李潇,Databricks Spark 研发总监,管理一跨国团队,专注于 Apache Spark 和 Databricks Runtime 的开发和建设。他是 Apache Spark 项目管理委员会成员。本科毕业于南京理工大学,后在佛罗里达大学(University of Florida)获计算机博士学位, 曾就职于 IBM,获发明大师称号(Master Inventor),在数据处理领域发表专利十余篇。(Github: gatorsmile)
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/2662E8A25913413BB20FFD125DBCA227-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
EMR StarRocks VS 开源版本功能差异介绍
EMR StarRocks 线上公开课 第2期直播亮点Serverless StarRocks 客户案例分享Serverless StarRocks VS 开源版本能力介绍讲师简介弘锐 - 阿里云 E-MapReduce 产品专家
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/1AC88414C69B436491D7EB348769657D-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
使用DDI+Confluent进行实时数据采集入湖和分析【Databricks 数据洞察公开课】
本次课程将介绍网约车模拟数据从产生、发布到流数据服务confluent,通过Databricks Structured Streaming 进行实时数据处理,存储到LakeHouse,并使用spark和spark sql进行分析的应用实践。讲师/嘉宾简介李锦桂-阿里云开源大数据平台开发工程师
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/7844CDBB21B8469C8EE8CD757A03670D-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
使用 Databricks 进行营销效果归因分析的应用实践【Databricks 数据洞察公开课】
本次课程将介绍如何试用Databricks进行广告效果归因分析,完成一站式的部署机器学习,包括数据ETL、数据校验、模型训练/评测/应用等全流程。讲师/嘉宾简介冯加亮,阿里云开源大数据平台技术工程师
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/85FA5B7086D64474AC94D0FEBD995D38-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
企业级全托管 Spark 大数据分析平台及案例分析【Databricks 数据洞察公开课】
从产品介绍、功能、典型场景、应用案例、Demo演示等多方面入手,介绍如何基于Databricks 数据洞察——Apache Spark的全托管数据分析平台,满足数据湖分析、实时数仓、离线数仓、BI数据分析、AI机器学习等场景需求。产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群讲师/嘉宾简介棕泽阿里云技术专家阿里云开源大数据生态企业研发负责人
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/8CE4A8A35B654DDBAE89E442E5DD0B87-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
开源大数据社区 & 阿里云 E-MapReduce 系列直播 第10期
EMR on ACK是企业级半托管的开源大数据平台,为阿里云E-MapReduce(EMR)提供了一个部署选项,允许您在阿里云容器服务Kubernetes版 (ACK) 上运行开源大数据框架。Yarn on K8S方案帮助您平衡不同集群的资源使用,共享集群间计算资源,充分利用所有节点的计算资源,满足计算资源弹性调度,云上混合部署在线和离线任务的需求。本次直播将重点展开 Yarn on ACK 的弹性介绍。讲师简介霁谦 阿里云开源大数据平台 高级开发工程师
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/5576E6DF95174E3A93DE3C0909B50451-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
数据湖JindoFS+OSS 实操干货36讲 第四课(7/8讲)
【第7/8讲 直播主题】1、Flink 高效 sink 写入 OSS2、Flume 高效写入 OSS【背景】为了让更多开发者了解并使用 JindoFS,由阿里云 JindoFS+OSS 团队打造的专业公开课【数据湖 JindoFS+OSS 实操干货36讲】会在每周二16:00准时开讲!从五大板块入手,玩转数据湖!讲师介绍重湖 - 阿里巴巴计算平台事业部 EMR 高级工程师焱冰 - 阿里巴巴计算平台事业部 EMR 技术专家
![](https://vod-yq-aliyun.taobao.com/vod-7651a3/image/default/8FD7550BC6B54D7296E7EF765B4E8173-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
Intel MLlib:构建平台优化的Spark机器学习
Intel MLlib是一个为Apache Spark MLlib优化的软件包。它在保持和Spark MLlib兼容的同时,在底层利用原生算法库来实现在CPU和GPU上的最优化算法,同时使用Collective Communication来实现效率更高的节点间通信。我们的初步结果表明,该软件包在最小化应用改动的基础上,可以极大地提升MLlib算法的性能。讲师介绍吴晓昶英特尔亚太研发有限公司大数据部门的高级软件工程师,主要研究方向为并行计算,大数据系统和机器学习,CPU和GPU的性能优化。目前关注Spark和机器学习的系统性能优化。
![](https://vod-yq.aliyun.com/vod-7651a3/image/default/4D1A69879E7542C2B0F170EE565DD7EF-6-2.png?x-oss-process=image/resize,h_160,m_lfit)
JindoFS 存储策略和读写优化
本次分享主要介绍数据读写在计算存储分离的场景下所面临的常见问题以及相关的优化手段,并结合应用场景介绍对数据缓存加速的相关技术和策略。讲师介绍姚舜扬,花名辰山,阿里巴巴计算平台事业部 EMR 高级开发工程师,目前从事大数据存储方面的开发和优化工作