本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
日志内容本身是一种重要信息,日志之间的相对顺序也是因果关系的一种反映,某些场景下如果日志内容完全相同,但是日志间的顺序错乱了反映出来的结果可能和真实世界里面的事件完全相反。
本文从C++11并发编程中的关键概念——内存模型与原子类型入手,结合详尽的代码示例,抽丝剥茧地介绍了如何实现无锁化并发的性能优化。
JSON 日志因灵活易扩展而广泛应用,但其海量数据也带来分析挑战。本文系统介绍阿里云日志服务(SLS)中处理 JSON 日志的最佳实践,涵盖数据预处理、索引配置、JSON 函数使用及 SQL 智能生成,助你高效挖掘日志价值。
本篇不仅仅是介绍Spring循环依赖的原理,而且给出Spring不能支持的循环依赖场景与案例,对其进行详细解析,同时给出解决建议与方案,以后出现此问题可以少走弯路。