本次案例主要分享森马集团面对多年自建的多套数仓产品体系,通过阿里云MaxCompute+Hologres+DataWorks统一数仓平台,保障数据生产稳定性与数据质量,减少ETL链路及计算时间,每年数仓整体费用从300多万降到180万。
MaxCompute支持QUALIFY语法过滤Window函数的结果,使得查询语句更简洁易理解。Window函数和QUALIFY语法之间的关系可以类比聚合函数+GROUP BY语法和HAVING语法。
MaxCompute推出新语法 - PIVOT/UNPIVOT:通过PIVOT关键字基于聚合将一个或者多个指定值的行转换为列;通过UNPIVOT关键字可将一个或者多个列转换为行。以更简洁易用的方式满足行转列和列转行的需求,简化了查询语句,提高了广大大数据开发者的生产力。
实时数据大屏是实时计算的重要应用场景之一,广泛应用在电商业务中,用于实时监控和分析电商平台的运营情况。通过大屏展示实时的销售额、订单量、用户活跃度、商品热度等数据指标,帮助业务人员随时了解业务的实时状态,快速发现问题和机会。同时,通过数据可视化和趋势分析,大屏也提供了决策支持和优化运营的功能,帮助业务人员做出及时的决策和调整策略,优化电商业务的运营效果。 下面以电商业务为背景,介绍如何构建经典实时数仓,实现实时数据从业务库到ODS层、DWD层、DWS层全链路流转,基于Dataphin和Quick BI实现实时数据大屏。
本文介绍如何使用函数计算 GPU 实例闲置模式低成本、快速的部署 Google Gemma 模型服务。
Dataphin v3.13引入了跨节点参数功能,允许任务间传递消息。输出节点(如SQL、Shell、Python任务)能输出参数,输入节点可以接收并使用这些参数。此功能解决了通过公共存储中转消息的复杂性和低效问题。应用场景包括:金融企业的币种转换,其中汇率任务(输出节点)提供汇率,转换任务(输入节点)使用该汇率;以及产品目录更新检查,通过跨节点参数控制是否需要执行数据导入任务。用户可以通过任务编辑器设置和传递跨节点参数,并在运维中进行补数据操作。
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.2版本中,Dataphin敏捷版上线助力企业打造轻量版数据中台,打通数据资产管理和消费,陪伴企业迈入数据高价值应用新阶段。
FlinkSQL的行级权限解决方案及源码,支持面向用户级别的行级数据访问控制,即特定用户只能访问授权过的行,隐藏未授权的行数据。此方案是实时领域Flink的解决方案,类似离线数仓Hive中Ranger Row-level Filter方案。