当系统出现大量或者重大的错误却不被人感知,将会对业务产生影响,从而导致资产损失。当竞争对手实施了新战术,却无法及时感知,跟不上竞争对手的节奏,总是追着对方尾巴走。当要做决策的时候,海量的业务数据增长却无法实时看到聚合结果,决策总是凭借过往经验或者过时的数据分析之上。
当前大数据处理工业界非常重要的一个大趋势是一体化,尤其是湖仓一体架构。与过去分散的数据仓库和数据湖不同,湖仓一体架构通过将数据存储和处理融为一体,不仅提升了数据访问速度和处理效率,还简化了数据管理流程,降低了资源成本。企业可以更轻松地实现数据治理和分析,从而快速决策。paimon是国内开源的,也是最年轻的成员。 本文主要演示如何在 Dataphin 产品中构建 Flink+Paimon 的流式湖仓方案。
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.2版本中,Dataphin敏捷版上线助力企业打造轻量版数据中台,打通数据资产管理和消费,陪伴企业迈入数据高价值应用新阶段。
你真的用对了 useRef 吗?在与 TypeScript 一起使用、以及撰写组件库的情况下,你的写法能够避开以下所有场景的坑吗?
本文提供一种相对Sidecar部署更轻量级的采集方式,只需要部署少量的Logtail容器,即可采集不同业务容器的日志。
本文中我们分析了 什么 是 “流”,对比了 Java 上几种常见的 “流”库,引入和详细介绍了 Java 22 中的 Stream Gather API 。同时也简单分享了利用虚拟线程 如何简化 Stream map Concurrent操作符的实现。希望抛砖引玉和大家分享新的特性,共同进步。同时也希望大家都可以升级到新版本的 JDK,更好的赋能业务。
Lazada选品平台包含全网商家、商品的圈选,通过Hologres RoaringBitmap能力帮助业务突破选品池20w大小限制,6000+选品池调度完成由12h下降至1h,单个选品池调度时间由90s下降至2s。