为增强对 Python 应用,特别是 Python LLM 应用的可观测性,阿里云推出了 Python 探针,旨在解决 LLM 应用落地难、难落地等问题。助力企业落地 LLM。本文将从阿里云 Python 探针的接入步骤、产品能力、兼容性等方面展开介绍。并提供一个简单的 LLM 应用例子,方便测试。
端到端链路追踪是覆盖全部关联 IT 系统,能够完整记录用户行为在系统间调用路径与状态的最佳实践方案。而真正实现端到端链路追踪,需要解决三个难题:链路插桩、链路采集与加工、链路上下文透传。阿里云 ARMS 目前已支持全链路端到端追踪,快来查看转发吧~
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
本文整理自2024年云栖大会阿里云智能集团高级技术专家金吉祥的演讲《ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用》。
当代AI来势汹汹,本文从AI的特点、对研发的挑战、AI的应用工程和场景分化等剖析了AI时代的应用工程化架构演进之路。
RocketMQ 作为一款流行的分布式消息中间件,被广泛应用于各种大型分布式系统和微服务中,承担着异步通信、系统解耦、削峰填谷和消息通知等重要的角色。随着技术的演进和业务规模的扩大,安全相关的挑战日益突出,消息系统的访问控制也变得尤为重要。然而,RocketMQ 现有的 ACL 1.0 版本已经无法满足未来的发展。因此,我们推出了 RocketMQ ACL 2.0 升级版,进一步提升 RocketMQ 数据的安全性。本文将介绍 RocketMQ ACL 2.0 的新特性、工作原理,以及相关的配置和实践。
iLogtail 作为一款开创性的轻量级日志采集器,历经 13 载风雨,始终致力于高效地从多元化的数据源中萃取、处理可观测信息,并无缝传输至阿里云日志服务或各类日志分析平台。今年,适逢 iLogtail 开源两周年的里程碑时刻,我们将回顾 iLogtail 的技术演进之路,领略其不断突破边界、引领可观测采集未来的创新力量。
像 Unix 命令一样支持多级管道级联,像加工预览一样实时处理查询结果,更便捷的交互,更丰富的算子,更灵活的探索半结构化日志,快来试试使用 SPL 语言查询日志数据吧~