借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。
淘天集团数据开发团队基于Fluss构建新一代实时数仓,解决数据消费冗余、探查困难及大State运维难题。Fluss融合列存与实时更新能力,支持列裁剪、KV点查、Delta Join及湖流一体,显著降低IO与计算资源消耗,提升作业稳定性与数据探查效率。已在淘天AB实验平台落地,覆盖搜索、推荐等核心业务,通过618大促验证,实现千万级流量、秒级延迟,资源消耗降低30%,State缩减超100TB。未来将持续深化湖仓架构,拓展AI场景应用。
阿里巴巴开发工程师,Apache Flink Committer 任庆盛,在 9 月 24 日 Apache Flink Meetup 的分享。
当管理多个Prometheus实例时,阿里云Prometheus托管版相比社区版提供了更可靠的数据采集和便捷的管理。本文比较了全局聚合实例与数据投递方案,两者在不同场景下各有优劣。
本文旨在提供一个指导性的框架,帮助用户了解插件的安装、配置以及探索如何通过 Grafana 内的阿里云 OpenAPI 插件来对云上数据进行可视化和快速验证开发原型,加强数据可视化和云监控能力,助力开发速度。
相对于传统软件研发,微服务架构下典型的需求交付最大的区别在于有了能够小范围真实验证的机制,且交付单位较小,风险可控,灰度发布可以弥补线下测试的不足。本文从 DevOps 视角概述灰度发布实践,介绍如何将灰度发布与 DevOps 工作融合,快来了解吧~
本文聚焦于线上应用的风险管理,特别是针对“错”(程序运行不符合预期)和“慢”(性能低下或响应迟缓)两大类问题,提出了一个系统化的根因诊断方案。
本文以构建系统可观测为切入点,对比 OpenTelemetry 与 Prometheus 的相同与差异,重点介绍如何将应用的 OpenTelemetry 指标接入 Prometheus 及背后原理以及介绍阿里云可观测监控 Prometheus 版拥抱 OpenTelemetry及相关落地实践案例。
AI 应用在商业化服务的阶段会面临诸多挑战,比如更快的服务交付速度,更实时、精准的结果以及更人性化的体验等,传统架构限制于同步交互,无法满足上述需求,本篇文章给大家分享一下如何基于事件驱动架构应对上述挑战。