本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
本文聚焦于线上应用的风险管理,特别是针对“错”(程序运行不符合预期)和“慢”(性能低下或响应迟缓)两大类问题,提出了一个系统化的根因诊断方案。
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
政采云基础架构团队技术专家朱海峰介绍了业务网关项目的背景和解决方案。
无论是使用 Nacos-Controller 实现配置的双向同步,还是直接在应用中接入 Nacos SDK 以获得更高级的配置管理特性,都能显著提升配置管理的灵活性、安全性和可维护性。使用 Nacos,您能够更好地管理和优化您的应用配置,从而提高系统的稳定性和可靠性。
本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。
是否还记得 2022 年 K8s Ingress Nginx 披露了的 3 个高危安全漏洞(CVE-2021-25745, CVE-2021-25746, CVE-2021-25748),并在那一年宣布停止接收新功能 PR,专注修复并提升稳定性。