官方博客-第28页-阿里云开发者社区

  • 2024-05-15
    370

    Lindorm:时序数据“存、算、管、用”的最佳实践

    本文档介绍Lindorm时序引擎在时序数据的存储、计算、管理、应用上的最佳实践。

    370
  • 2024-05-15
    312

    MSE服务治理最佳实践:基于Ingress-nginx网关实现全链路灰度

    微服务架构下,有一些需求开发涉及到微服务调用链路上的多个微服务同时改动。通常每个微服务都会有灰度环境或分组来接受灰度流量。我们希望进入上游灰度环境的流量也能进入下游灰度的环境中,确保1个请求始终在灰度环境中传递。即使这个调用链路上有一些微服务应用不存在灰度环境,那么这些微服务应用在请求下游应用的时候依然能够回到下游应用的灰度环境中。我们通过 MSE 提供的全链路灰度能力,可以在不需要修改任何业务代码的情况下,轻松实现上述所说的全链路灰度能力。

    312
  • 2024-05-15
    288

    PolarDB-X用15M内存跑1G的TPCH

    在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。

    288
  • 2024-05-15
    209

    谈谈PolarDB-X在读写分离场景的实践

    针对写少读多的业务,本文采用读写分离的方式,将读写流量做分流,减轻主实例的压力,同时利用只读库横向的扩展能力,快速提升读性能。

    209
  • 2024-05-15
    273

    泛娱乐直播平台的数据库选型和场景解决方案

    直播平台的数据库选型要考虑流量波动、数据规模和实时性需求,如使用Redis的Sorted Set处理实时排行榜,List处理用户关注列表,使用分布式数据库PolarDB-X处理核心业务数据,AnalyticDB进行大数据分析。通过这些技术和策略,直播平台能够应对复杂的业务需求和流量挑战。

    273
  • 2024-05-15
    272

    大规模 Spring Cloud 微服务无损上下线探索与实践

    “从一次常见的发布说起,在云上某个系统应用发布时,重启阶段会导致较大数量的 OpenAPI、上游业务的请求响应时间明显增加甚至超时失败。随着业务的发展,用户数和调用数越来越多,该系统又一直保持一周发布二次的高效迭代频率,发布期间对业务的影响越来越无法接受,微服务下线的治理也就越来越紧迫。”

    272
  • 2024-05-15
    598

    基于阿里云RDS PostgreSQL打造实时用户画像推荐系统(varbitx))

    用户画像在市场营销的应用重建中非常常见,已经不是什么新鲜的东西,比较流行的解决方案是给用户贴标签,根据标签的组合,圈出需要的用户。通常画像系统会用到宽表,以及分布式的系统。宽表的作用是存储标签,例如每列代表一个标签。但实际上这种设计不一定是最优或唯一的设计,本文将以PostgreSQL数据库为基础,给大家讲解一下更加另类的设计思路,并且看看效率如何。

    598
  • 2024-05-15
    246

    基于图数据库搭建企业级的推荐类系统

    本文为您介绍基于专有云敏捷版数据库场景DBStack和图数据库搭建企业级推荐类系统。

    246
  • 2024-05-15
    245

    我们在数据库上做全链路灰度的方式

    本文介绍了MSE提供的数据库层面的灰度能力。

    245
  • 1
    ...
    27
    28
    29
    ...
    35
    到第
    28/35
    AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等