随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。
本文介绍了 GraalVM 静态编译技术在云原生环境下的应用:ARMS 发布了支持 GraalVM 应用的 Java Agent 探针,可为 GraalVM 应用提供开箱即用的可观测能力。同时,文章还提供了使用 ARMS 对 GraalVM 应用进行可观测的详细步骤。
CLR集成为SQL Server提供了强大的扩展能力,突破了T-SQL的限制,极大地拓展了SQL 的应用场景,如:复杂字符串处理、高性能计算、图像处理、机器学习集成、自定义加密解密等,使开发人员能够利用 .NET Framework的丰富功能来处理复杂的数据库任务。
本文将深入探讨 PolarDB-X 列存查询引擎的分层缓存解决方案,以及其在优化 ORC 列存查询性能中的关键作用。
本文将通过阿里云开源的 Golang Agent,帮助用户实现“一行代码都不改”就能获取到应用产生的各种观测数据,同时提升运维团队和研发团队的幸福感。
本次课程由阿里云消息队列产品专家杨文婷分享,主题为高弹性、低成本的云消息队列RabbitMQ。内容涵盖四个方面:1) 产品优势,包括兼容开源客户端、解决稳定性痛点和高弹性低成本;2) 架构实现原理,如分布式架构和弹性调度系统;3) Serverless系列带来的按量付费模式和资源池优势;4) Serverless适用场景,如开发测试环境、峰谷流量业务等。最后解答了关于顺序消费、与普通MQ对比、自动扩容及API支持等常见问题。
将 Qwen2.5 模型部署于函数计算 FC,用户能依据业务需求调整资源配置,有效应对高并发场景,并通过优化资源配置,如调整实例规格、多 GPU 部署和模型量化来提升推理速度。此外,函数计算支持多样化 GPU 计费模式(按需计费、阶梯定价、极速模式),可根据业务需求调整,在面对高频请求和大规模数据处理时,能够显著降低综合成本。