官方博客-第4页-阿里云开发者社区

  • 2024-12-27
    439

    极简开发,极速上线:构建端到端大模型应用

    本文将以一个经典的 RAG(检索增强生成)知识问答系统为例,详细介绍从智能体设计到最终应用部署的全流程。

    439
  • 2025-01-02
    522

    阿里云百炼产品月刊【2024年12月】

    12月,阿里云百炼带来多项技术革新与服务升级。本月重点包括VL模型部分规格降价,上线多个新模型,如视觉推理模型qvq-72b-preview、多语言文本统一排序模型gte-rerank和人物视频生成模型videoretalk等。应用模块新增音视频互动、互联网搜索及意图选择等功能,极大丰富了应用场景。此外,新增Context Cache功能和batch调用支持,提升了响应速度并降低了费用。

    522
  • 2024-05-15
    2218

    大模型推理优化实践:KV cache复用与投机采样

    在本文中,我们将详细介绍两种在业务中实践的优化策略:多轮对话间的 KV cache 复用技术和投机采样方法。我们会细致探讨这些策略的应用场景、框架实现,并分享一些实现时的关键技巧。

    2,218
  • 2024-11-06
    407

    基于开源框架Spring AI Alibaba快速构建Java应用

    本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。

    407
  • 2024-11-29
    739

    作为开发者,我如何提高任务型大模型应用的响应性能

    本文基于实际场景,分享了作为开发者提高大模型响应性能的四个实用方法。

    739
  • 2025-01-14
    204

    Spring AI 智能体通过 MCP 集成本地文件数据

    MCP 作为一款开放协议,直接规范了应用程序如何向 LLM 提供上下文。MCP 就像是面向 AI 应用程序的 USB-C 端口,正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 提供了一个将 AI 模型连接到不同数据源和工具的标准化方法。

    204
  • 2024-11-01
    567

    探索LLM推理全阶段的JSON格式输出限制方法

    文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。

    567
  • 2024-11-07
    801

    白话文讲解大模型| Attention is all you need

    本文档旨在详细阐述当前主流的大模型技术架构如Transformer架构。我们将从技术概述、架构介绍到具体模型实现等多个角度进行讲解。通过本文档,我们期望为读者提供一个全面的理解,帮助大家掌握大模型的工作原理,增强与客户沟通的技术基础。本文档适合对大模型感兴趣的人员阅读。

    801
  • 2024-12-02
    749

    阿里云百炼产品月刊【2024年11月】

    11月,阿里云百炼平台迎来一系列重大更新,包括推出QwQ、qwen-turbo、qwen-Plus等多个新模型及快照版本,强化AI推理、文本生成、视觉理解等能力。此外,还优化了模型管理、数据处理等功能,提升了用户体验。

    749
  • 1
    ...
    3
    4
    5
    ...
    32
    到第
    4/32