官方博客-第4页-阿里云开发者社区

  • 2025-11-17
    417

    阿里云 AI 搜索 DeepSearch 技术实践

    阿里云OpenSearch LLM版推出DeepSearch技术,实现从RAG 1.0到RAG 2.0的升级。基于多智能体协同架构,支持复杂推理、多源检索与深度搜索,显著提升问答准确率,助力企业智能化升级。

  • 2025-01-09
    2388

    阿里云百炼xWaytoAGI共学课DAY3 - 更热门的多模态交互案例带练,实操掌握AI应用开发

    本文章旨在帮助读者了解并掌握大模型多模态技术的实际应用,特别是如何构建基于多模态的实用场景。文档通过几个具体的多模态应用场景,如拍立淘、探一下和诗歌相机,展示了这些技术在日常生活中的应用潜力。

    2,388
  • 2024-09-03
    3740

    【算法精讲系列】通义模型Prompt调优的实用技巧与经验分享

    本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。

  • 2024-06-24
    53530

    从云原生视角看 AI 原生应用架构的实践

    本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。

    53,530
  • 2024-07-29
    20288

    LLM 应用可观测性:从 Trace 视角展开的探索与实践之旅

    基于大语言模型的应用在性能、成本、效果等方面存在一系列实际痛点,本文通过分析 LLM 应用模式以及关注点差异来阐明可观测技术挑战,近期阿里云可观测推出了面向 LLM 应用的可观测解决方案以及最佳实践,一起来了解下吧。

    20,288
  • 1534

    Excel数据治理新思路:引入智能体实现自动纠错【Python+Agent】

    本文介绍如何利用智能体与Python代码批量处理Excel中的脏数据,解决人工录入导致的格式混乱、逻辑错误等问题。通过构建具备数据校验、异常标记及自动修正功能的系统,将数小时的人工核查任务缩短至分钟级,大幅提升数据一致性和办公效率。

  • 2025-02-07
    1116

    浏览量超 10w 的热图,描述 RAG 的主流架构

    大模型性能的持续提升,进一步挖掘了 RAG 的潜力,RAG 将检索系统与生成模型相结合,带来诸多优势,如实时更新知识、降低成本等。点击本文,为您梳理 RAG 的基本信息,并介绍提升大模型生成结果的方法,快一起看看吧~

    1,116
  • 2025-04-24
    2234

    MCP 实践:基于 MCP 架构实现知识库答疑系统

    文章探讨了AI Agent的发展趋势,并通过一个实际案例展示了如何基于MCP(Model Context Protocol)开发一个支持私有知识库的问答系统。

  • 2024-11-01
    2269

    探索LLM推理全阶段的JSON格式输出限制方法

    文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。

    2,269
  • 1
    ...
    3
    4
    5
    ...
    43
    到第