XXL-JOB 是一个开源的分布式任务调度平台,开箱即用、简单易上手,得到了很多开发者的喜爱。和其他中间件开源项目一样,当开发者把开源项目部署到公共云,应用到企业级场景中时,就会在稳定性、性能、安全、其他云产品间集成体验上提出更高的要求。基于此背景,阿里云微服务引擎 MSE 基于自研的分布式任务调度平台 SchedulerX,通过兼容 XXL-JOB 客户端的通信协议,在开源 XXL-JOB 版本的基础上,提升了稳定性、安全、性能、可观测等能力,满足企业客户的需求。此外,为方便测试,提供了一个月 400 元额度的免费试用和预付费首购 5 折、续费 6.5 折起的优惠。
目前 MSE 服务治理的 离群实例摘除、标签路由、金丝雀发布、全链路灰度等功能已经使用该路由方案,经过我们的压测与演练,在CPU、RT等方面均有不少提升,以 Demo 应用为例 (服务调用的跳数为2,下游30节点,每个节点1c2g) 其中调用 RT 提升约 6.7%。
针对问题咨询场景中出现大量相关领域的问题,PAI提供了智能客服对话系统解决方案,以降低客户等待时间和人工客服成本。本文以汽车售前咨询业务领域为例,介绍如何基于人工智能算法,快速构建智能客服对话系统。
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
在绿色计算的大背景下,算力分配将朝着更加高效和智能的方向持续演进。本文将介绍阿里妈妈展示广告引擎在全局视角下优化算力分配的新探索,让在线引擎像变形金刚一样灵活强悍。算力在提倡节能减排,降本增效,追求绿色技术的大趋势下,充分利用好算力资源,尤其是在阿里妈妈展示广告引擎这种使用近百万core机器资源的业...
Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。
本文聚焦 LoongSuite 生态核心组件 LoongCollector,深度解析 LoongCollector 在智算服务中的技术突破,涵盖多租户观测隔离、GPU 集群性能追踪及事件驱动型数据管道设计,通过零侵入采集、智能预处理与自适应扩缩容机制,构建面向云原生 AI 场景的全栈可观测性基础设施,重新定义高并发、强异构环境下的可观测性能力边界。