在复杂中后台设计中,为解决配置变更影响多场景问题,提出结合正向和逆向信息架构,采用原子化任务,动态组合任务,降低用户和开发成本,优化体验并改变已有的产品迭代和人机交互模式。未来可能发展为AI自动根据业务规则和用户行为生成最佳方案。
程序语言与编译器团队和阿里云可观测团队开源了遵循 Opentelemetry 规范的 Golang Agent 0.1.0-RC 版本,希望能通过编译期自动插桩的手段实现无侵入式的 Golang 应用观测。
唯一不变的是变化,在现代复杂的商业环境中,企业的业务形态与规模往往处于不断变化和扩大之中。这种动态发展对企业的信息系统提出了更高的要求,特别是在软件架构方面。为了应对不断变化的市场需求和业务扩展,软件架构必须进行相应的演进和优化。网关作为互联网流量的入口,其形态也在跟随软件架构持续演进迭代中。我们下面就聊一聊网关的演进历程以及在时下火热的 AI 浪潮下,网关又会迸发怎样新的形态。
Anolis OS 作为国内首个正式提供 OpenVINO 开发包和镜像的服务器端操作系统,推动国内 AI 推理生态和能力的升级。
阿里云云消息队列 Kafka 版 Serverless 系列凭借其卓越的弹性能力,为道旅科技提供了灵活高效的数据流处理解决方案。无论是应对突发流量还是规划长期资源需求,该方案均能帮助企业实现资源动态调整和成本优化,同时保障业务的高可用性和连续性。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
如何充分发挥 SQL 能力,是本篇文章的主题。本文尝试独辟蹊径,强调通过灵活的、发散性的数据处理思维,就可以用最基础的语法,解决复杂的数据场景。
本文主要介绍业务消息的应用解耦场景,具体解耦什么? RocketMQ 在业务消息场景的基础特性。业界那么多消息队列能实现应用解耦,RocketMQ 在基础特性上有哪些增强?
随着互联网从 Web 2.0 迈进到 AI 时代,用户和互联网的交互方式,AI 时代下互联网的内容生产流程都发生了显著的转变,这对基础设施(Infra)提出了新的诉求,也带来了新的机遇。Infra 包含的内容非常丰富,本文仅从网关层面分享笔者的所见所感所悟。