推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。
通过遵循以上最佳实践,可以构建一个高效、可靠的 RAG 系统,为用户提供准确和专业的回答。这些实践涵盖了从文档处理到系统配置的各个方面,能够帮助开发者构建更好的 RAG 应用。
本文介绍了Spring AI Alibaba MCP的开发与应用,旨在解决企业级AI Agent在分布式环境下的部署和动态更新问题。通过集成Nacos,Spring AI Alibaba实现了流量负载均衡及节点变更动态感知等功能。开发者可方便地将企业内部业务系统发布为MCP服务或开发自己的AI Agent。文章详细描述了如何通过代理应用接入存量业务系统,以及全新MCP服务的开发流程,并提供了完整的配置示例和源码链接。未来,Spring AI Alibaba计划结合Nacos3的mcp-registry与mcp-router能力,进一步优化Agent开发体验。
Apache Dubbo 3.3.3(即将发布)实现了与 OpenAPI 的深度集成,通过与 OpenAPI 的深度集成,用户能够体验到从文档生成到接口调试、测试和优化的全流程自动化支持。不论是减少手动工作量、提升开发效率,还是支持多语言和多环境,Dubbo 3.3.3 都展现了其对开发者体验的极大关注。结合强大的 Mock 数据生成和自动化测试能力,这一版本为开发者提供了极具竞争力的服务治理解决方案。如果你正在寻找高效、易用的微服务框架,Dubbo 3.3.3 将是你不容错过的选择。
本文作者基于自身在RAG技术领域长达半年的实践经验,分享了从初识RAG的潜力到面对实际应用挑战的心路历程,以及如何通过一系列优化措施逐步解决这些挑战的过程。