官方博客-第18页-阿里云开发者社区

  • 2024-12-06
    1031

    【实战干货】AI大模型工程应用于车联网场景的实战总结

    本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。

    1,031
  • 2025-01-24
    443

    任务调度企业级场景下的新选择,兼容 XXL-JOB 通信协议

    XXL-JOB 是一个开源的分布式任务调度平台,开箱即用、简单易上手,得到了很多开发者的喜爱。和其他中间件开源项目一样,当开发者把开源项目部署到公共云,应用到企业级场景中时,就会在稳定性、性能、安全、其他云产品间集成体验上提出更高的要求。基于此背景,阿里云微服务引擎 MSE 基于自研的分布式任务调度平台 SchedulerX,通过兼容 XXL-JOB 客户端的通信协议,在开源 XXL-JOB 版本的基础上,提升了稳定性、安全、性能、可观测等能力,满足企业客户的需求。此外,为方便测试,提供了一个月 400 元额度的免费试用和预付费首购 5 折、续费 6.5 折起的优惠。

  • 2025-02-20
    644

    大模型推理服务全景图

    推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。

    644
  • 2025-02-20
    706

    破解 vLLM + DeepSeek 规模化部署的“不可能三角”

    vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。

    706
  • 2025-04-10
    493

    用自定义插件生成一篇图文并茂的文章

    本文是《5步教你创建大模型自定义插件》的下篇,主要就已有的自定义插件中的生图能力为例,演示如何生成一个图文并茂的文章。

    493
  • 2024-05-15
    935

    Modelscope结合α-UMi:基于Modelscope的多模型协作Agent

    基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。

  • 2024-05-15
    56124

    更优性能与性价比,从自建 ELK 迁移到 SLS 开始

    本文介绍了 SLS 基本能力,并和开源自建 ELK 做了对比,可以看到 SLS 相比开源 ELK 有较大优势。

    56,124
  • 2024-05-15
    189486

    Apache RocketMQ ACL 2.0 全新升级

    RocketMQ ACL 2.0 不管是在模型设计、可扩展性方面,还是安全性和性能方面都进行了全新的升级。旨在能够为用户提供精细化的访问控制,同时,简化权限的配置流程。欢迎大家尝试体验新版本,并应用在生产环境中。

    189,486
  • 2024-05-15
    728

    联合XTuner,魔搭社区全面支持数据集的长文本训练

    XTuner和魔搭社区(SWIFT)合作引入了一项长序列文本训练技术,该技术能够在多GPU环境中将长序列文本数据分割并分配给不同GPU,从而减少每个GPU上的显存占用。通过这种方式,训练超大规模模型时可以处理更长的序列,提高训练效率。魔搭社区的SWIFT框架已经集成了这一技术,支持多种大模型和数据集的训练。此外,SWIFT还提供了一个用户友好的界面,方便用户进行训练和部署,并且支持评估功能。

  • 1
    ...
    17
    18
    19
    ...
    42
    到第