DeepSeek加速了模型平权,大模型推理需求激增,性能提升主战场从训练转向推理。SSE(Server-Sent Events)和WebSocket成为大模型应用的标配网络通信协议。SSE适合服务器单向推送实时数据,如一问一答场景;WebSocket支持双向实时通信,适用于在线游戏、多人协作等高实时性场景。两者相比传统HTTPS协议,能更好地支持流式输出、长时任务处理和多轮交互,满足大模型应用的需求。随着用户体量扩大,网关层面临软件变更、带宽成本及恶意攻击等挑战,需通过无损上下线、客户端重连机制、压缩算法及安全防护措施应对。
Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。
本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
当管理多个Prometheus实例时,阿里云Prometheus托管版相比社区版提供了更可靠的数据采集和便捷的管理。本文比较了全局聚合实例与数据投递方案,两者在不同场景下各有优劣。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。