基于前面三章的铺垫,本章我们将展示大模型Agent的强大能力。我们不仅要实现让大模型同时使用多种查询工具,还要实现让大模型能查询天气情况,最后让大模型自己写代码来查询天气情况。
本文介绍了如何使用 Nacos 3.0.1 与 Higress 配合,实现 HTTP 服务转化为 MCP 协议服务,并支持自动注册与代理。通过 Docker 部署环境,结合 Spring AI Alibaba 框架,可实现服务的自动暴露和动态配置管理,适用于零改造存量应用适配 MCP 协议的场景。
本文深入探讨了Agent智能体的概念、技术挑战及实际落地方法,涵盖了从狭义到广义的Agent定义、构建过程中的四大挑战(效果不稳定、规划权衡、领域知识集成、响应速度),并提出了相应的解决方案。文章结合阿里云服务领域的实践经验,总结了Agent构建与调优的完整路径,为推动Agent在To B领域的应用提供了有价值的参考。
本文详述了阿里云数据库 Tair/Redis 将使用长连接客户端在非预期故障宕机切换场景下的恢复时间从最初的 900s 降到 120s 再到 30s的优化过程,涉及产品优化,开源产品问题修复等诸多方面。
本文主要介绍Google于2025年4月9日发布的Agent2Agent Protocol(简称“A2A”),这是一个旨在促进不同类型智能体(Agent)之间高效沟通与协作的开放协议。
阿里云云监控 2.0 推出 SysOM 底层操作系统诊断能力,基于 eBPF + BTF 协同分析,无需侵入业务,即可一键完成从物理页到文件路径、再到容器进程的全栈内存归因,让“黑盒内存”无所遁形。