本文介绍了OLAP分析在大数据分析中的位置,分析并介绍目前大数据OLAP遇到的分析性能、资源隔离、高可用、弹性扩缩容等核心问题,解析阿里云Hologres是如何解决极致性能、弹性、业务永续、性价比等核心刚需的最佳实践,介绍阿里云Hologres弹性计算组在弹性计算、资源隔离上的探索和创新。
本文向大家介绍,MSE Nacos 是如何解决敏感配置的安全隐患,并提供使用 MSE Nacos 加解密敏感配置的最佳实践。
从整体技术架构上学习 RocketMQ 5.0 的云原生架构、一体化架构,最后再分别从业务场景切入,详细介绍 RocketMQ 5.0 在不同的业务场景提供的能力和关键技术原理,包括业务消息、流处理、物联网以及面向云时代的事件驱动场景。
本文主要介绍业务消息的应用解耦场景,具体解耦什么? RocketMQ 在业务消息场景的基础特性。业界那么多消息队列能实现应用解耦,RocketMQ 在基础特性上有哪些增强?
本文来学习一个典型的物联网技术架构,以及在这个技术架构里面,消息队列所发挥的作用。在物联网的场景里面,对消息技术的要求和面向服务端应用的消息技术有什么区别?学习 RocketMQ 5.0 的子产品 MQTT,是如何解决这些物联网技术难题的。
近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。
这篇文章介绍了使用开源工具NextChat和Higress搭建的一个模拟ChatGPT和通义千问对话PK的测试场景。
RocketMQ 作为一款流行的分布式消息中间件,被广泛应用于各种大型分布式系统和微服务中,承担着异步通信、系统解耦、削峰填谷和消息通知等重要的角色。随着技术的演进和业务规模的扩大,安全相关的挑战日益突出,消息系统的访问控制也变得尤为重要。然而,RocketMQ 现有的 ACL 1.0 版本已经无法满足未来的发展。因此,我们推出了 RocketMQ ACL 2.0 升级版,进一步提升 RocketMQ 数据的安全性。本文将介绍 RocketMQ ACL 2.0 的新特性、工作原理,以及相关的配置和实践。
本文主要介绍了基于 OpenTeletemetry 与 W3C 协议构建端到端全链路的解决方案,同时探讨了 RUM 与端到端链路集成的最佳实践,希望可以为大家在生产环境落地应用提供一些参考。