XXL-JOB 是一个开源的分布式任务调度平台,开箱即用、简单易上手,得到了很多开发者的喜爱。和其他中间件开源项目一样,当开发者把开源项目部署到公共云,应用到企业级场景中时,就会在稳定性、性能、安全、其他云产品间集成体验上提出更高的要求。基于此背景,阿里云微服务引擎 MSE 基于自研的分布式任务调度平台 SchedulerX,通过兼容 XXL-JOB 客户端的通信协议,在开源 XXL-JOB 版本的基础上,提升了稳定性、安全、性能、可观测等能力,满足企业客户的需求。此外,为方便测试,提供了一个月 400 元额度的免费试用和预付费首购 5 折、续费 6.5 折起的优惠。
为了构建现代化的可观测数据采集器LoongCollector,iLogtail启动架构通用化升级,旨在提供高可靠、高可扩展和高性能的实时数据采集和计算服务。然而,通用化的过程总会伴随性能劣化,本文重点介绍LoongCollector的性能优化之路,并对通用化和高性能之间的平衡给出见解。
目前 MSE 服务治理的 离群实例摘除、标签路由、金丝雀发布、全链路灰度等功能已经使用该路由方案,经过我们的压测与演练,在CPU、RT等方面均有不少提升,以 Demo 应用为例 (服务调用的跳数为2,下游30节点,每个节点1c2g) 其中调用 RT 提升约 6.7%。
本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。