近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
在当今数字化转型加速的时代,企业 IT 系统的复杂度与日俱增,如何高效地管理和监控这些系统成为了一项挑战。阿里云作为全球领先的云计算服务商,提供了一整套全面的可观测性解决方案,覆盖从业务、端侧(小程序、APP、H5 等)、应用、中间件、容器/ECS 等全栈的监控体系,旨在帮助企业构建强大而灵活的可观测性体系。其中,标签(Tag)作为一种核心组织和管理手段,在阿里云可观测体系中扮演着至关重要的角色。本文将深入探讨阿里云可观测系列产品中标签的应用,以及如何运用标签在阿里云可观测产品体系下进行体系化建设并给出相关最佳实践。
在 Spring Cloud 应用中可以非常低成本地集成 Nacos 实现配置动态刷新,在应用程序代码中通过 Spring 官方的注解 @Value 和 @ConfigurationProperties,引用 Spring enviroment 上下文中的属性值,这种用法的最大优点是无代码层面侵入性,但也存在诸多限制,为了解决问题,提升应用接入 Nacos 配置中心的易用性,Spring Cloud Alibaba 发布一套全新的 Nacos 配置中心的注解。
本文主要介绍了 ARMS 用户体验监控的基本功能特性,并介绍了在几种常见场景下的最佳实践。
像 Unix 命令一样支持多级管道级联,像加工预览一样实时处理查询结果,更便捷的交互,更丰富的算子,更灵活的探索半结构化日志,快来试试使用 SPL 语言查询日志数据吧~
相对于传统软件研发,微服务架构下典型的需求交付最大的区别在于有了能够小范围真实验证的机制,且交付单位较小,风险可控,灰度发布可以弥补线下测试的不足。本文从 DevOps 视角概述灰度发布实践,介绍如何将灰度发布与 DevOps 工作融合,快来了解吧~
随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。
SAE 会继续致力于为用户提供极简易用、成本低廉、功能强大的 Serverless 应用全托管平台:“我们希望让用户做的更少而收获更多,通过 Serverless 化,深度用云就像用水电煤一样简单”。
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。