SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
从海量的日志数据中,按照各种灵活的条件进行即时查询搜索,是可观测场景下的基本需求。本文介绍了 SLS 新推出的高性能 SPL 日志查询模式,支持 Unix 风格级联管道式语法,以及各种丰富的 SQL 处理函数。同时通过计算下推、向量化计算等优化,使得 SPL 查询可以在数秒内处理亿级数据,并支持 SPL 过滤结果分布图、随机翻页等特性。
在本文中,我们将深入探讨为何选择 iLogtail,以及它在 SPL 数据处理方面相较于 Logstash 有何独特优势。通过对比这两款工具的架构、性能以及功能,我们希望能够揭示 iLogtail 如何在日益复杂的日志处理需求中脱颖而出,帮助您做出明智的技术选择。
该文档详细介绍了阿里云一键部署和手动部署多媒体数据存储与分发方案的步骤。一键部署通过资源编排服务(ROS)实现自动化,涵盖注册账号、开通服务、创建OSS Bucket、配置CDN加速及绑定IMM等功能,简化了复杂操作。手动部署则更细致地展示了每个配置环节,包括网络规划、资源创建、域名绑定、CDN配置、证书加密及最终的验证与清理,确保用户对整个流程有清晰理解。两种方式均以OSS为核心,支持数据上传、转码处理和加速分发,保障高效稳定的用户体验。
本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
在系统开发、运维过程中,日志是最重要的信息之一,其最大的优点是简单直接。SLS 数据加工功能旨在解决非结构化的日志数据处理,当前全面升级,集成 SPL 语言、更强的数据处理性能、更优的使用成本。
本文将深入探讨Linux系统中的动态链接库机制,这其中包括但不限于全局符号介入、延迟绑定以及地址无关代码等内容。
在业务场景中,日志数据可能存储在日志服务 Project 的不同 Logstore/MetricStore 中或不同地域的 Project 中。日志服务的数据集(StoreView)功能支持跨地域、跨 Store 联合查询和分析,让用户基于数据集就能高效便捷地查询分析全地域的数据,真正做到数据分析不受地域边界的限制。